File: t_FunctionalChaos_nd.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (278 lines) | stat: -rwxr-xr-x 9,216 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#! /usr/bin/env python

import openturns as ot
import math as m

ot.TESTPREAMBLE()


def sobol(indices, a):
    value = 1.0
    for i in range(indices.getSize()):
        value *= 1.0 / (3.0 * (1.0 + a[indices[i]]) ** 2)
    return value


# Problem parameters
inputDimension = 3
outputDimension = 2

# Reference analytical values
meanTh_Sobol = 1.0
covTh_Sobol = 1.0
kappa = ot.Point(inputDimension)
a = 7.0
b = 0.1
# Create the gSobol function
inputVariables = ot.Description(inputDimension)
outputVariables = ot.Description(outputDimension)
formula = ot.Description(outputDimension)
formula[0] = "1.0"
for i in range(inputDimension):
    kappa[i] = 0.5 * i
    covTh_Sobol *= 1.0 + 1.0 / (3.0 * (1.0 + kappa[i]) ** 2)
    inputVariables[i] = "xi" + str(i)
    formula[0] = (
        formula[0]
        + " * ((abs(4.0 * xi"
        + str(i)
        + " - 2.0) + "
        + str(kappa[i])
        + ") / (1.0 + "
        + str(kappa[i])
        + "))"
    )
formula[1] = (
    "sin("
    + str(-m.pi)
    + " + 2 * "
    + str(m.pi)
    + " * xi0) + ("
    + str(a)
    + ") * (sin("
    + str(-m.pi)
    + " + 2 * "
    + str(m.pi)
    + " * xi1)) ^ 2 + ("
    + str(b)
    + ") * ("
    + str(-m.pi)
    + " + 2 * "
    + str(m.pi)
    + " * xi2)^4 * sin("
    + str(-m.pi)
    + " + 2 * "
    + str(m.pi)
    + " * xi0)"
)
covTh_Sobol -= 1
# Reference analytical values
meanTh_Ishigami = a / 2.0
covTh_Ishigami = b**2 * m.pi**8 / 18.0 + (b * m.pi**4) / 5.0 + a**2 / 8.0 + 1.0 / 2.0
sob_1_Ishigami = ot.Point(3)
sob_1_Ishigami[0] = (
    b * m.pi**4 / 5.0 + b**2 * m.pi**8 / 50.0 + 1.0 / 2.0
) / covTh_Ishigami
sob_1_Ishigami[1] = (a**2 / 8.0) / covTh_Ishigami
sob_1_Ishigami[2] = 0.0
sob_2_Ishigami = ot.Point(3)
sob_2_Ishigami[0] = 0.0
sob_2_Ishigami[1] = (b**2 * m.pi**8 / 18.0 - b**2 * m.pi**8 / 50.0) / covTh_Ishigami
sob_2_Ishigami[2] = 0.0
sob_3_Ishigami = ot.Point(1, 0.0)
# Multidimensional reference values
# Mean
meanTh = ot.Point(outputDimension)
meanTh[0] = meanTh_Sobol
meanTh[1] = meanTh_Ishigami
# Covariance
covTh = ot.CovarianceMatrix(outputDimension)
covTh[0, 0] = covTh_Sobol
covTh[1, 1] = covTh_Ishigami
# 1rst order Sobol
sob_1 = ot.Point(inputDimension * outputDimension)
indices = ot.Indices(1)
indices[0] = 0
sob_1[0] = sobol(indices, kappa) / covTh_Sobol
indices[0] = 1
sob_1[1] = sobol(indices, kappa) / covTh_Sobol
indices[0] = 2
sob_1[2] = sobol(indices, kappa) / covTh_Sobol
sob_1[3] = sob_1_Ishigami[0]
sob_1[4] = sob_1_Ishigami[1]
sob_1[5] = sob_1_Ishigami[2]
# 2nd order Sobol
sob_2 = ot.Point(inputDimension * outputDimension)
indices = ot.Indices(2)
indices[0] = 0
indices[1] = 1
sob_2[0] = sobol(indices, kappa) / covTh_Sobol
indices[1] = 2
sob_2[1] = sobol(indices, kappa) / covTh_Sobol
indices[0] = 1
indices[1] = 2
sob_2[2] = sobol(indices, kappa) / covTh_Sobol
sob_2[3] = sob_2_Ishigami[0]
sob_2[4] = sob_2_Ishigami[1]
sob_2[5] = sob_2_Ishigami[2]
# 3rd order Sobol
sob_3 = ot.Point(outputDimension)
indices = ot.Indices(3)
indices[0] = 0
indices[1] = 1
indices[2] = 2
sob_3[0] = sobol(indices, kappa) / covTh_Sobol
sob_3[1] = sob_3_Ishigami[0]
# 1rst order Total Sobol
sob_T1 = ot.Point(inputDimension * outputDimension)
sob_T1[0] = sob_1[0] + sob_2[0] + sob_2[1] + sob_3[0]
sob_T1[1] = sob_1[1] + sob_2[0] + sob_2[2] + sob_3[0]
sob_T1[2] = sob_1[2] + sob_2[1] + sob_2[2] + sob_3[0]
sob_T1[3] = sob_1[3] + sob_2[3] + sob_2[4] + sob_3[1]
sob_T1[4] = sob_1[4] + sob_2[3] + sob_2[5] + sob_3[1]
sob_T1[5] = sob_1[5] + sob_2[4] + sob_2[5] + sob_3[1]
sob_T2 = ot.Point(inputDimension * outputDimension)
sob_T2[0] = sob_2[0] + sob_3[0]
sob_T2[1] = sob_2[1] + sob_3[0]
sob_T2[2] = sob_2[2] + sob_3[0]
sob_T2[3] = sob_2[3] + sob_3[1]
sob_T2[4] = sob_2[4] + sob_3[1]
sob_T2[5] = sob_2[5] + sob_3[1]
# 3rd order Total Sobol
sob_T3 = ot.Point(sob_3)
model = ot.SymbolicFunction(inputVariables, formula)

# Create the input distribution
distribution = ot.JointDistribution([ot.Uniform(0.0, 1.0)] * inputDimension)

# Create the orthogonal basis
enumerateFunction = ot.LinearEnumerateFunction(inputDimension)
productBasis = ot.OrthogonalProductPolynomialFactory(
    [ot.LegendreFactory()] * inputDimension, enumerateFunction
)

# Create the adaptive strategy
# We can choose amongst several strategies
# First, the most efficient (but more complex!) strategy
listAdaptiveStrategy = list()
degree = 6
indexMax = enumerateFunction.getStrataCumulatedCardinal(degree)
basisDimension = enumerateFunction.getStrataCumulatedCardinal(degree // 2)
threshold = 1.0e-6
listAdaptiveStrategy.append(
    ot.CleaningStrategy(productBasis, indexMax, basisDimension, threshold)
)
# Second, the most used (and most basic!) strategy
listAdaptiveStrategy.append(
    ot.FixedStrategy(productBasis, enumerateFunction.getStrataCumulatedCardinal(degree))
)

for adaptiveStrategyIndex in range(len(listAdaptiveStrategy)):
    adaptiveStrategy = listAdaptiveStrategy[adaptiveStrategyIndex]
    # Create the projection strategy
    samplingSize = 250
    listExperiment = list()
    # LHS experiment
    listExperiment.append(ot.LHSExperiment(distribution, samplingSize))
    for experiment in listExperiment:
        ot.RandomGenerator.SetSeed(0)
        X = experiment.generate()
        Y = model(X)
        # Create the polynomial chaos algorithm
        maximumResidual = 1.0e-10
        algo = ot.FunctionalChaosAlgorithm(X, Y, distribution, adaptiveStrategy)
        algo.setMaximumResidual(maximumResidual)
        algo.run()

        # Examine the results
        result = algo.getResult()
        print("###################################")
        print(algo.getAdaptiveStrategy())
        print(algo.getProjectionStrategy())
        residuals = result.getResiduals()
        print("residuals=", residuals)
        relativeErrors = result.getRelativeErrors()
        print("relative errors=", relativeErrors)

        # Post-process the results
        vector = ot.FunctionalChaosRandomVector(result)
        sensitivity = ot.FunctionalChaosSobolIndices(result)
        for outputIndex in range(outputDimension):
            print("output=", outputIndex)
            mean = vector.getMean()[outputIndex]
            print(
                "mean= %.5f" % mean,
                "absolute error=%.5e" % abs(mean - meanTh[outputIndex]),
            )
            variance = vector.getCovariance()[outputIndex, outputIndex]
            print(
                "variance=%.5f" % variance,
                "absolute error=%.5e" % abs(variance - covTh[outputIndex, outputIndex]),
            )
            indices = ot.Indices(1)
            for i in range(inputDimension):
                indices[0] = i
                value = sensitivity.getSobolIndex(i, outputIndex)
                print("value= %.5g" % value)
                print(
                    "Sobol index ",
                    i,
                    " =%.5f" % value,
                    "absolute error=%.5e"
                    % abs(value - sob_1[i + inputDimension * outputIndex]),
                )
            indices = ot.Indices(2)
            k = 0
            for i in range(inputDimension):
                indices[0] = i
                for j in range(i + 1, inputDimension):
                    indices[1] = j
                    value = sensitivity.getSobolIndex(indices, outputIndex)
                    print(
                        "Sobol index ",
                        indices,
                        " =%.5f" % value,
                        "absolute error=%.5e"
                        % abs(value - sob_2[k + inputDimension * outputIndex]),
                    )
                    k += 1
            indices = ot.Indices([0, 1, 2])
            value = sensitivity.getSobolIndex(indices, outputIndex)
            print(
                "Sobol index ",
                indices,
                " =%.5f" % value,
                "absolute error=%.5e" % abs(value - sob_3[outputIndex]),
            )
            for i in range(inputDimension):
                value = sensitivity.getSobolTotalIndex(i, outputIndex)
                print(
                    "Sobol total index ",
                    i,
                    " =%.5f" % value,
                    "absolute error=%.5e"
                    % abs(value - sob_T1[i + inputDimension * outputIndex]),
                )
            indices = ot.Indices(2)
            k = 0
            for i in range(inputDimension):
                indices[0] = i
                for j in range(i + 1, inputDimension):
                    indices[1] = j
                    value = sensitivity.getSobolTotalIndex(indices, outputIndex)
                    print(
                        "Sobol total index ",
                        indices,
                        " =%.5f" % value,
                        "absolute error=%.5e"
                        % abs(value - sob_T2[k + inputDimension * outputIndex]),
                    )
                    k += 1
            indices = ot.Indices([0, 1, 2])
            value = sensitivity.getSobolTotalIndex(indices, outputIndex)
            print(
                "Sobol total index ",
                indices,
                " =%.5f" % value,
                "absolute error=%.5e" % abs(value - sob_T3[1]),
            )