1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
ot.RandomGenerator.SetSeed(0)
# Instantiate one distribution object
dim = 2
copula = ot.GalambosCopula(0.5)
ott.assert_almost_equal(copula.getMean(), [0.5, 0.5], 0.0, 0.0)
ref_cov_matrix = ot.CovarianceMatrix(2, [0.0833333, 0.0241064, 0.0241064, 0.0833333])
ott.assert_almost_equal(copula.getCovariance(), ref_cov_matrix, 1e-5, 0.0)
# Is this copula an elliptical distribution?
assert not copula.isElliptical()
# Is this copula elliptical?
assert not copula.hasEllipticalCopula()
# Is this copula independent?
assert not copula.hasIndependentCopula()
# Test for realization of distribution
ott.assert_almost_equal(copula.getRealization(), [0.629877, 0.871724], 1e-5, 0.0)
# Test correlation and covariance
ott.assert_almost_equal(
copula.getCorrelation(),
ot.CovarianceMatrix(2, [1, 0.289277, 0.289277, 1]),
1e-5,
0.0,
)
ott.assert_almost_equal(
copula.getCovariance(),
ot.CovarianceMatrix(2, [0.0833333, 0.0241064, 0.0241064, 0.0833333]),
1e-5,
0.0,
)
ott.assert_almost_equal(
copula.getSpearmanCorrelation(),
ot.CovarianceMatrix(2, [1, 0.289277, 0.289277, 1]),
1e-5,
0.0,
)
ott.assert_almost_equal(
copula.getKendallTau(),
ot.CovarianceMatrix(2, [1, 0.19643, 0.19643, 1]),
1e-5,
0.0,
)
# Test for sampling
oneSample = copula.getSample(10)
ref_sample = [
[0.135276, 0.0205545],
[0.347057, 0.937166],
[0.92068, 0.699802],
[0.0632061, 0.188369],
[0.714382, 0.437797],
[0.373767, 0.67536],
[0.883503, 0.441284],
[0.92851, 0.925177],
[0.684575, 0.834214],
[0.359802, 0.916859],
]
ott.assert_almost_equal(oneSample, ref_sample, 1e-5, 0.0)
# Test for sampling
anotherSample = copula.getSample(10000)
ott.assert_almost_equal(anotherSample.computeMean(), [0.502777, 0.501261], 1e-5, 0.0)
ref_cov_matrix_2 = ot.CovarianceMatrix(2, [0.0833333, 0.0241064, 0.0244522, 0.0833333])
ott.assert_almost_equal(copula.getCovariance(), ref_cov_matrix_2, 1e-5, 0.0)
# Define a point
point = ot.Point(dim, 0.2)
# Show PDF and CDF of point
ott.assert_almost_equal(copula.computePDF(point), 1.231981, 1e-5, 0.0)
ott.assert_almost_equal(copula.computeCDF(point), 0.059814, 1e-4, 0.0)
# Get 50% quantile
quantile = copula.computeQuantile(0.5)
ott.assert_almost_equal(quantile, [0.67295, 0.67295], 1e-4, 0.0)
ott.assert_almost_equal(copula.computeCDF(quantile), 0.500000, 1e-4, 0.0)
# Get 5% quantile
quantile = copula.computeQuantile(0.95, True)
ott.assert_almost_equal(quantile, [0.180532, 0.180532], 1e-5, 0.0)
# Get 95% survival function
inverseSurvival = ot.Point(copula.computeInverseSurvivalFunction(0.95))
ott.assert_almost_equal(inverseSurvival, [0.0258323, 0.0258323], 1e-4, 0.0)
ott.assert_almost_equal(
copula.computeSurvivalFunction(inverseSurvival), 0.950000, 1e-4, 0.0
)
ott.assert_almost_equal(copula.computeEntropy(), -0.062336, 1e-4, 0.0)
# Test conditional methods
y = [0.5]
x = 0.6
p = copula.computeConditionalCDF(x, y)
ott.assert_almost_equal(p, 0.62707, 1e-4, 0.0)
ott.assert_almost_equal(
copula.computeConditionalQuantile(p, y), 0.5999999999999999, 1e-4, 0.0
)
# Extract the marginals
margin_0 = copula.getMarginal(0)
ott.assert_almost_equal(margin_0.computePDF([0.25]), 1.0, 0.0, 0.0)
ott.assert_almost_equal(margin_0.computeCDF([0.25]), 0.25, 0.0, 0.0)
ott.assert_almost_equal(margin_0.computeQuantile(0.95), [0.95], 0.0, 0.0)
ott.assert_almost_equal(margin_0.getRealization(), [0.56939], 1e-5, 0.0)
margin_1 = copula.getMarginal(1)
ott.assert_almost_equal(margin_1.computePDF([0.25]), 1.0, 0.0, 0.0)
ott.assert_almost_equal(margin_1.computeCDF([0.25]), 0.25, 0.0, 0.0)
ott.assert_almost_equal(margin_1.computeQuantile(0.95), [0.95], 0.0, 0.0)
ott.assert_almost_equal(margin_1.getRealization(), [0.0571768], 1e-5, 0.0)
# Extract a 2-D marginal
margins = copula.getMarginal([1, 0])
ott.assert_almost_equal(margins.computePDF([0.25] * 2), 1.1784, 1e-4, 0.0)
ott.assert_almost_equal(margins.computeCDF([0.25] * 2), 0.0883883, 1e-5, 0.0)
quantile = ot.Point(margins.computeQuantile(0.95))
ott.assert_almost_equal(quantile, [0.971115, 0.971115], 1e-5, 0.0)
ott.assert_almost_equal(margins.computeCDF(quantile), 0.950000, 1e-4, 0.0)
ott.assert_almost_equal(margins.getRealization(), [0.915787, 0.243714], 1e-5, 0.0)
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(copula)
validation.setMomentsSamplingSize(100000)
validation.run()
|