File: t_GalambosCopula_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (134 lines) | stat: -rwxr-xr-x 4,472 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

ot.RandomGenerator.SetSeed(0)

# Instantiate one distribution object
dim = 2
copula = ot.GalambosCopula(0.5)
ott.assert_almost_equal(copula.getMean(), [0.5, 0.5], 0.0, 0.0)
ref_cov_matrix = ot.CovarianceMatrix(2, [0.0833333, 0.0241064, 0.0241064, 0.0833333])
ott.assert_almost_equal(copula.getCovariance(), ref_cov_matrix, 1e-5, 0.0)

# Is this copula an elliptical distribution?
assert not copula.isElliptical()

# Is this copula elliptical?
assert not copula.hasEllipticalCopula()

# Is this copula independent?
assert not copula.hasIndependentCopula()

# Test for realization of distribution
ott.assert_almost_equal(copula.getRealization(), [0.629877, 0.871724], 1e-5, 0.0)

# Test correlation and covariance
ott.assert_almost_equal(
    copula.getCorrelation(),
    ot.CovarianceMatrix(2, [1, 0.289277, 0.289277, 1]),
    1e-5,
    0.0,
)
ott.assert_almost_equal(
    copula.getCovariance(),
    ot.CovarianceMatrix(2, [0.0833333, 0.0241064, 0.0241064, 0.0833333]),
    1e-5,
    0.0,
)
ott.assert_almost_equal(
    copula.getSpearmanCorrelation(),
    ot.CovarianceMatrix(2, [1, 0.289277, 0.289277, 1]),
    1e-5,
    0.0,
)
ott.assert_almost_equal(
    copula.getKendallTau(),
    ot.CovarianceMatrix(2, [1, 0.19643, 0.19643, 1]),
    1e-5,
    0.0,
)

# Test for sampling
oneSample = copula.getSample(10)
ref_sample = [
    [0.135276, 0.0205545],
    [0.347057, 0.937166],
    [0.92068, 0.699802],
    [0.0632061, 0.188369],
    [0.714382, 0.437797],
    [0.373767, 0.67536],
    [0.883503, 0.441284],
    [0.92851, 0.925177],
    [0.684575, 0.834214],
    [0.359802, 0.916859],
]
ott.assert_almost_equal(oneSample, ref_sample, 1e-5, 0.0)

# Test for sampling
anotherSample = copula.getSample(10000)
ott.assert_almost_equal(anotherSample.computeMean(), [0.502777, 0.501261], 1e-5, 0.0)
ref_cov_matrix_2 = ot.CovarianceMatrix(2, [0.0833333, 0.0241064, 0.0244522, 0.0833333])
ott.assert_almost_equal(copula.getCovariance(), ref_cov_matrix_2, 1e-5, 0.0)

# Define a point
point = ot.Point(dim, 0.2)

# Show PDF and CDF of point
ott.assert_almost_equal(copula.computePDF(point), 1.231981, 1e-5, 0.0)
ott.assert_almost_equal(copula.computeCDF(point), 0.059814, 1e-4, 0.0)

# Get 50% quantile
quantile = copula.computeQuantile(0.5)
ott.assert_almost_equal(quantile, [0.67295, 0.67295], 1e-4, 0.0)
ott.assert_almost_equal(copula.computeCDF(quantile), 0.500000, 1e-4, 0.0)

# Get 5% quantile
quantile = copula.computeQuantile(0.95, True)
ott.assert_almost_equal(quantile, [0.180532, 0.180532], 1e-5, 0.0)

# Get 95% survival function
inverseSurvival = ot.Point(copula.computeInverseSurvivalFunction(0.95))
ott.assert_almost_equal(inverseSurvival, [0.0258323, 0.0258323], 1e-4, 0.0)
ott.assert_almost_equal(
    copula.computeSurvivalFunction(inverseSurvival), 0.950000, 1e-4, 0.0
)
ott.assert_almost_equal(copula.computeEntropy(), -0.062336, 1e-4, 0.0)

# Test conditional methods
y = [0.5]
x = 0.6
p = copula.computeConditionalCDF(x, y)
ott.assert_almost_equal(p, 0.62707, 1e-4, 0.0)
ott.assert_almost_equal(
    copula.computeConditionalQuantile(p, y), 0.5999999999999999, 1e-4, 0.0
)

# Extract the marginals
margin_0 = copula.getMarginal(0)
ott.assert_almost_equal(margin_0.computePDF([0.25]), 1.0, 0.0, 0.0)
ott.assert_almost_equal(margin_0.computeCDF([0.25]), 0.25, 0.0, 0.0)
ott.assert_almost_equal(margin_0.computeQuantile(0.95), [0.95], 0.0, 0.0)
ott.assert_almost_equal(margin_0.getRealization(), [0.56939], 1e-5, 0.0)
margin_1 = copula.getMarginal(1)
ott.assert_almost_equal(margin_1.computePDF([0.25]), 1.0, 0.0, 0.0)
ott.assert_almost_equal(margin_1.computeCDF([0.25]), 0.25, 0.0, 0.0)
ott.assert_almost_equal(margin_1.computeQuantile(0.95), [0.95], 0.0, 0.0)
ott.assert_almost_equal(margin_1.getRealization(), [0.0571768], 1e-5, 0.0)

# Extract a 2-D marginal
margins = copula.getMarginal([1, 0])
ott.assert_almost_equal(margins.computePDF([0.25] * 2), 1.1784, 1e-4, 0.0)
ott.assert_almost_equal(margins.computeCDF([0.25] * 2), 0.0883883, 1e-5, 0.0)
quantile = ot.Point(margins.computeQuantile(0.95))
ott.assert_almost_equal(quantile, [0.971115, 0.971115], 1e-5, 0.0)
ott.assert_almost_equal(margins.computeCDF(quantile), 0.950000, 1e-4, 0.0)
ott.assert_almost_equal(margins.getRealization(), [0.915787, 0.243714], 1e-5, 0.0)

ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(copula)
validation.setMomentsSamplingSize(100000)
validation.run()