1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
#! /usr/bin/env python
import openturns as ot
import math
import openturns.testing as ott
ot.TESTPREAMBLE()
f = ot.SymbolicFunction(["x"], ["sin(x)"])
a = -2.5
b = 4.5
# Default parameters
algo = ot.GaussLegendre()
print("Algo=", algo)
# High-level interface
value, adaptedNodes = algo.integrateWithNodes(f, ot.Interval(a, b))
ref = math.cos(a) - math.cos(b)
print("value=%.6f" % value[0], ", ref=%.6f" % ref, ", adaptedNodes=", adaptedNodes)
# Low-level interface
algo = ot.GaussLegendre([20])
value, adaptedNodes = algo.integrateWithNodes(f, ot.Interval(a, b))
print("value=%.6f" % value[0], ", ref=%.6f" % ref, ", adaptedNodes=", adaptedNodes)
# Check polynomial degree of exactness
def checkPolynomialExactness(
marginalDegrees,
marginalSizes,
lowerBound=0.0,
upperBound=1.0,
rtol=1.0e-15,
atol=0.0,
verbose=False,
):
"""
Check polynomial exactness of GaussLegendre quadrature
Parameters
----------
marginalDegrees : list of int
The polynomial degree of the marginal polynomials to integrate
marginalSizes : list of int
The number of nodes on each marginal axis.
lowerBound : float
The lower bound of quadrature
upperBound : float
The upper bound of quadrature
rtol : float, > 0
The relative tolerance
atol : float, > 0
The absolute tolerance
verbose : bool
Set to True to print intermediate messages
Examples
--------
marginalDegrees = [5, 3, 7]
marginalSizes = [3, 2, 4] # Polynomial exactness space = P5 x P3 x P7
checkPolynomialExactness(marginalDegrees, marginalSizes)
"""
dimension = len(marginalDegrees)
if len(marginalSizes) != dimension:
raise ValueError(
f"Number of marginal degrees is {dimension} "
f"but number of marginal sizes is {len(marginalSizes)}"
)
# Set bounds
bounds = ot.Interval([lowerBound] * dimension, [upperBound] * dimension)
# Create polynomial
polynomialCollection = ot.PolynomialCollection()
for i in range(dimension):
coefficients = [0.0] * (1 + marginalDegrees[i])
coefficients[-1] = 1
polynomial = ot.UniVariatePolynomial(coefficients)
polynomialCollection.add(polynomial)
productPoly = ot.ProductPolynomialEvaluation(polynomialCollection)
# Evaluate integral
algo = ot.GaussLegendre(marginalSizes)
computedIntegral = algo.integrate(ot.Function(productPoly), bounds)[0]
# Expected integral
lowerBoundPoint = bounds.getLowerBound()
upperBoundPoint = bounds.getUpperBound()
expectedIntegral = 1.0
for i in range(dimension):
marginalIntegral = (
upperBoundPoint[i] ** (1 + marginalDegrees[i])
- lowerBoundPoint[i] ** (1 + marginalDegrees[i])
) / (1 + marginalDegrees[i])
expectedIntegral *= marginalIntegral
absoluteError = abs(computedIntegral - expectedIntegral)
if verbose:
print(
f"Polynomial : {str(productPoly):20s}, "
f" integral computed = {computedIntegral:.7f}, "
f" expected = {expectedIntegral:.7f}, "
f" absolute error = {absoluteError:.3e}"
)
ott.assert_almost_equal(expectedIntegral, computedIntegral, rtol, atol)
# Test different polynomials, up to the maximum
marginalSizes = [3, 2, 4] # Polynomial exactness space = P5 x P3 x P7
maximumMarginalDegrees = [2 * n for n in marginalSizes]
experiment = ot.Tuples(maximumMarginalDegrees)
marginalDegreesList = experiment.generate()
for i in range(marginalDegreesList.getSize()):
marginalDegrees = marginalDegreesList[i]
checkPolynomialExactness(
marginalDegrees, marginalSizes, rtol=1.0e-14, verbose=False
)
|