1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
#! /usr/bin/env python
import openturns as ot
from openturns.testing import assert_almost_equal
ot.TESTPREAMBLE()
ot.PlatformInfo.SetNumericalPrecision(5)
def matrixToSample(matrix):
"""Converts a matrix into a Sample, so that we can
assert_almost_equal a Matrix"""
size = matrix.getNbRows()
dimension = matrix.getNbColumns()
sample = ot.Sample(size, dimension)
for i in range(size):
for j in range(dimension):
sample[i, j] = matrix[i, j]
return sample
def local2globalCovariance(localErrorCovariance, size, outputDimension):
"""
Converts a local covariance into a global covariance.
size = inputObservations.getSize()
outputDimension = modelObservations.getDimension()
"""
covarianceDimension = size * outputDimension
observationDimension = localErrorCovariance.getDimension()
globalErrorCovariance = ot.CovarianceMatrix(covarianceDimension)
for i in range(size):
for j in range(observationDimension):
for k in range(observationDimension):
globalErrorCovariance[
i * observationDimension + j, i * observationDimension + k
] = localErrorCovariance[j, k]
return globalErrorCovariance
"""
Thanks to - Antoine Dumas, Phimeca
References
- J. Lemaitre and J. L. Chaboche (2002) "Mechanics of solid materials" Cambridge University Press.
"""
ot.RandomGenerator.SetSeed(0)
# Create the function.
g = ot.SymbolicFunction(["strain", "R", "C", "gam"], ["R + C*(1-exp(-gam*strain))"])
# Define the random vector.
Strain = ot.Uniform(0, 0.07)
unknownR = 750
unknownC = 2750
unknownGamma = 10
R = ot.Dirac(unknownR)
C = ot.Dirac(unknownC)
Gamma = ot.Dirac(unknownGamma)
Strain.setDescription(["Strain"])
R.setDescription(["R"])
C.setDescription(["C"])
Gamma.setDescription(["Gamma"])
# Create the joint input distribution function.
inputRandomVector = ot.JointDistribution([Strain, R, C, Gamma])
# Create the Monte-Carlo sample.
sampleSize = 10
inputSample = inputRandomVector.getSample(sampleSize)
outputStress = g(inputSample)
# Generate observation noise.
stressObservationNoiseSigma = 40.0 # (Pa)
noiseSigma = ot.Normal(0.0, stressObservationNoiseSigma)
sampleNoiseH = noiseSigma.getSample(sampleSize)
observedStress = outputStress + sampleNoiseH
observedStrain = inputSample[:, 0]
# Set the calibration parameters
# Define the value of the reference values of the $\theta$ parameter.
# In the bayesian framework, this is called the mean of the *prior* gaussian distribution.
# In the data assimilation framework, this is called the *background*.
R = 700 # Exact : 750
C = 2500 # Exact : 2750
Gamma = 8.0 # Exact : 10
thetaPrior = ot.Point([R, C, Gamma])
# The following statement create the calibrated function from the model.
# The calibrated parameters Ks, Zv, Zm are at indices 1, 2, 3 in the inputs arguments of the model.
calibratedIndices = [1, 2, 3]
mycf = ot.ParametricFunction(g, calibratedIndices, thetaPrior)
# Gaussian linear calibration
# The standard deviation of the observations.
sigmaStress = 10.0 # (Pa)
# Define the covariance matrix of the output Y of the model.
localErrorCovariance = ot.CovarianceMatrix(1)
localErrorCovariance[0, 0] = sigmaStress**2
# Define the covariance matrix of the parameters $\theta$ to calibrate.
sigmaR = 0.1 * R
sigmaC = 0.1 * C
sigmaGamma = 0.1 * Gamma
priorCovariance = ot.CovarianceMatrix(3)
priorCovariance[0, 0] = sigmaR**2
priorCovariance[1, 1] = sigmaC**2
priorCovariance[2, 2] = sigmaGamma**2
methods = ["SVD", "QR", "Cholesky"]
for method in methods:
print("method=", method)
# 1. Local calibration
# The `GaussianLinearCalibration` class performs the gaussian linear
# calibration by linearizing the model in the neighbourhood of the prior.
algo = ot.GaussianLinearCalibration(
mycf,
observedStrain,
observedStress,
thetaPrior,
priorCovariance,
localErrorCovariance,
method,
)
# The `run` method computes the solution of the problem.
algo.run()
calibrationResult = algo.getResult()
# Analysis of the results
# Maximum A Posteriori estimator
thetaMAP = calibrationResult.getParameterMAP()
exactTheta = ot.Point([762.661, 3056.59, 8.52781])
assert_almost_equal(thetaMAP, exactTheta)
# Covariance matrix of theta
thetaPosterior = calibrationResult.getParameterPosterior()
covarianceThetaStar = matrixToSample(thetaPosterior.getCovariance())
exactCovarianceTheta = ot.Sample(
[
[42.4899, 288.43, -1.70502],
[288.43, 15977.1, -67.6046],
[-1.70502, -67.6046, 0.294659],
]
)
assert_almost_equal(covarianceThetaStar, exactCovarianceTheta)
print("result=", calibrationResult)
# 2. Global covariance
outputDimension = observedStress.getDimension()
globalErrorCovariance = local2globalCovariance(
localErrorCovariance, sampleSize, outputDimension
)
# The `GaussianLinearCalibration` class performs the gaussian linear
# calibration by linearizing the model in the neighbourhood of the prior.
algo = ot.GaussianLinearCalibration(
mycf,
observedStrain,
observedStress,
thetaPrior,
priorCovariance,
globalErrorCovariance,
method,
)
# The `run` method computes the solution of the problem.
algo.run()
# Check other fields
calibrationResult = algo.getResult()
# Analysis of the results
# Maximum A Posteriori estimator
thetaMAP = calibrationResult.getParameterMAP()
exactTheta = ot.Point([762.661, 3056.59, 8.52781])
assert_almost_equal(thetaMAP, exactTheta)
# Covariance matrix of theta
thetaPosterior = calibrationResult.getParameterPosterior()
covarianceThetaStar = matrixToSample(thetaPosterior.getCovariance())
exactCovarianceTheta = ot.Sample(
[
[42.4899, 288.43, -1.70502],
[288.43, 15977.1, -67.6046],
[-1.70502, -67.6046, 0.294659],
]
)
assert_almost_equal(covarianceThetaStar, exactCovarianceTheta)
# Check other fields
print("result=", calibrationResult)
|