1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
#! /usr/bin/env python
"""
Consider a model exactly linear with respect to the parameters.
In this case, the LLSQ calibration performs as good as it can.
Considers a case without observed inputs.
"""
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
ot.PlatformInfo.SetNumericalPrecision(5)
ot.RandomGenerator.SetSeed(0)
# This model is linear in (a, b, c) and identifiable.
# Derived from y = a + b * x + c * x^2 at x=[-1.0, -0.6, -0.2, 0.2, 0.6, 1.0]
g = ot.SymbolicFunction(
["a", "b", "c"],
[
"a + -1.0 * b + 1.0 * c",
"a + -0.6 * b + 0.36 * c",
"a + -0.2 * b + 0.04 * c",
"a + 0.2 * b + 0.04 * c",
"a + 0.6 * b + 0.36 * c",
"a + 1.0 * b + 1.0 * c",
],
)
inputDimension = g.getInputDimension()
outputDimension = g.getOutputDimension()
trueParameter = ot.Point([12.0, 7.0, -8])
parameterDimension = trueParameter.getDimension()
Theta1 = ot.Dirac(trueParameter[0])
Theta2 = ot.Dirac(trueParameter[1])
Theta3 = ot.Dirac(trueParameter[2])
inputRandomVector = ot.JointDistribution([Theta1, Theta2, Theta3])
candidate = ot.Point([8.0, 9.0, -6.0])
calibratedIndices = [0, 1, 2]
model = ot.ParametricFunction(g, calibratedIndices, candidate)
outputObservationNoiseSigma = 0.01
meanNoise = ot.Point(outputDimension)
covarianceNoise = ot.Point(outputDimension, outputObservationNoiseSigma)
R = ot.IdentityMatrix(outputDimension)
observationOutputNoise = ot.Normal(meanNoise, covarianceNoise, R)
size = 100
inputObservations = ot.Sample(size, 0)
# Generate exact outputs
inputSample = inputRandomVector.getSample(size)
outputStress = g(inputSample)
# Add noise
sampleNoiseH = observationOutputNoise.getSample(size)
outputObservations = outputStress + sampleNoiseH
priorCovariance = ot.CovarianceMatrix(inputDimension)
for i in range(inputDimension):
priorCovariance[i, i] = 3.0 + (1.0 + i) * (1.0 + i)
for j in range(i):
priorCovariance[i, j] = 1.0 / (1.0 + i + j)
errorCovariance = ot.CovarianceMatrix(outputDimension)
for i in range(outputDimension):
errorCovariance[i, i] = 2.0 + (1.0 + i) * (1.0 + i)
for j in range(i):
errorCovariance[i, j] = 1.0 / (1.0 + i + j)
globalErrorCovariance = ot.CovarianceMatrix(outputDimension * size)
for i in range(outputDimension * size):
globalErrorCovariance[i, i] = 0.1 * (2.0 + (1.0 + i) * (1.0 + i))
for j in range(i):
globalErrorCovariance[i, j] = 0.1 / (1.0 + i + j)
methods = ["SVD", "QR", "Cholesky"]
for method in methods:
print("method=", method)
# 1. Check with local error covariance
print("Local error covariance")
algo = ot.GaussianLinearCalibration(
model,
inputObservations,
outputObservations,
candidate,
priorCovariance,
errorCovariance,
method,
)
algo.run()
calibrationResult = algo.getResult()
# Analysis of the results
# Maximum A Posteriori estimator
parameterMAP = calibrationResult.getParameterMAP()
print("MAP=", repr(parameterMAP))
rtol = 0.0
atol = 1.0
ott.assert_almost_equal(parameterMAP, trueParameter, rtol, atol)
# 2. Check with global error covariance
print("Global error covariance")
algo = ot.GaussianLinearCalibration(
model,
inputObservations,
outputObservations,
candidate,
priorCovariance,
globalErrorCovariance,
method,
)
algo.run()
calibrationResult = algo.getResult()
# Analysis of the results
# Maximum A Posteriori estimator
parameterMAP = calibrationResult.getParameterMAP()
print("MAP=", repr(parameterMAP))
rtol = 0.0
atol = 1.0
ott.assert_almost_equal(parameterMAP, trueParameter, rtol, atol)
|