File: t_GaussianLinearCalibration_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (122 lines) | stat: -rwxr-xr-x 3,990 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#! /usr/bin/env python

import openturns as ot
from openturns.testing import assert_almost_equal

ot.TESTPREAMBLE()
ot.PlatformInfo.SetNumericalPrecision(5)


def matrixToSample(matrix):
    """Converts a matrix into a Sample, so that we can
    assert_almost_equal a Matrix"""
    size = matrix.getNbRows()
    dimension = matrix.getNbColumns()
    sample = ot.Sample(size, dimension)
    for i in range(size):
        for j in range(dimension):
            sample[i, j] = matrix[i, j]
    return sample


"""
Test the calibration of an exponential function with 3 parameters.
Test the three decompositions (QR, SVD, Cholesky) of the least
squares problem.
Test the local and global error covariances.
"""
m = 10
x = [[0.5 + i] for i in range(m)]

inVars = ["a", "b", "c", "x"]
formulas = ["a + b * exp(c * x)", "(a * x^2 + b) / (c + x^2)"]
g = ot.SymbolicFunction(inVars, formulas)
trueParameter = [2.8, 1.2, 0.5]
params = [0, 1, 2]
model = ot.ParametricFunction(g, params, trueParameter)
y = model(x)
y += ot.Normal([0.0] * 2, [0.05] * 2, ot.IdentityMatrix(2)).getSample(m)
candidate = [1.0] * 3
priorCovariance = ot.CovarianceMatrix(3)
for i in range(3):
    priorCovariance[i, i] = 3.0 + (1.0 + i) * (1.0 + i)
    for j in range(i):
        priorCovariance[i, j] = 1.0 / (1.0 + i + j)
errorCovariance = ot.CovarianceMatrix(2)
for i in range(2):
    errorCovariance[i, i] = 2.0 + (1.0 + i) * (1.0 + i)
    for j in range(i):
        errorCovariance[i, j] = 1.0 / (1.0 + i + j)
globalErrorCovariance = ot.CovarianceMatrix(2 * m)
for i in range(2 * m):
    globalErrorCovariance[i, i] = 2.0 + (1.0 + i) * (1.0 + i)
    for j in range(i):
        globalErrorCovariance[i, j] = 1.0 / (1.0 + i + j)

methods = ["SVD", "QR", "Cholesky"]
for method in methods:
    print("method=", method)
    # 1. Check with local error covariance
    print("Local error covariance")
    algo = ot.GaussianLinearCalibration(
        model, x, y, candidate, priorCovariance, errorCovariance, method
    )
    algo.run()
    result = algo.getResult()

    # Analysis of the results
    # Maximum A Posteriori estimator
    thetaMAP = result.getParameterMAP()
    exactTheta = ot.Point([5.69186, 0.0832132, 0.992301])
    rtol = 1.0e-2
    assert_almost_equal(thetaMAP, exactTheta, rtol)

    # Covariance matrix of theta
    thetaPosterior = result.getParameterPosterior()
    covarianceThetaStar = matrixToSample(thetaPosterior.getCovariance())
    exactCovarianceTheta = ot.Sample(
        [
            [0.308302, -0.000665387, 6.81135e-05],
            [-0.000665387, 8.36243e-06, -8.86775e-07],
            [6.81135e-05, -8.86775e-07, 9.42234e-08],
        ]
    )
    assert_almost_equal(covarianceThetaStar, exactCovarianceTheta)

    # Check other fields
    print("result=", result)
    # Draw result
    graph = result.drawParameterDistributions()
    graph = result.drawResiduals()
    graph = result.drawObservationsVsInputs()
    graph = result.drawObservationsVsPredictions()

    # 2. Check with global error covariance
    print("Global error covariance")
    algo = ot.GaussianLinearCalibration(
        model, x, y, candidate, priorCovariance, globalErrorCovariance, method
    )
    algo.run()
    result = algo.getResult()

    # Analysis of the results
    # Maximum A Posteriori estimator
    thetaMAP = result.getParameterMAP()
    exactTheta = ot.Point([3.4397, 0.095908, 0.99096])
    rtol = 1.0e-2
    assert_almost_equal(thetaMAP, exactTheta, rtol)

    # Covariance matrix of theta
    thetaPosterior = result.getParameterPosterior()
    covarianceThetaStar = matrixToSample(thetaPosterior.getCovariance())
    exactCovarianceTheta = ot.Sample(
        [
            [1.27112112e00, -4.52977089e-03, 4.71588017e-04],
            [-4.52977089e-03, 5.93651856e-04, -6.36371482e-05],
            [4.71588017e-04, -6.36371482e-05, 6.84130285e-06],
        ]
    )
    assert_almost_equal(covarianceThetaStar, exactCovarianceTheta)

    # Check other fields
    print("result=", result)