1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
#! /usr/bin/env python
import openturns as ot
from openturns.testing import assert_almost_equal
ot.TESTPREAMBLE()
ot.PlatformInfo.SetNumericalPrecision(5)
def matrixToSample(matrix):
"""Converts a matrix into a Sample, so that we can
assert_almost_equal a Matrix"""
size = matrix.getNbRows()
dimension = matrix.getNbColumns()
sample = ot.Sample(size, dimension)
for i in range(size):
for j in range(dimension):
sample[i, j] = matrix[i, j]
return sample
"""
Test the calibration of an exponential function with 3 parameters.
Test the three decompositions (QR, SVD, Cholesky) of the least
squares problem.
Test the local and global error covariances.
"""
m = 10
x = [[0.5 + i] for i in range(m)]
inVars = ["a", "b", "c", "x"]
formulas = ["a + b * exp(c * x)", "(a * x^2 + b) / (c + x^2)"]
g = ot.SymbolicFunction(inVars, formulas)
trueParameter = [2.8, 1.2, 0.5]
params = [0, 1, 2]
model = ot.ParametricFunction(g, params, trueParameter)
y = model(x)
y += ot.Normal([0.0] * 2, [0.05] * 2, ot.IdentityMatrix(2)).getSample(m)
candidate = [1.0] * 3
priorCovariance = ot.CovarianceMatrix(3)
for i in range(3):
priorCovariance[i, i] = 3.0 + (1.0 + i) * (1.0 + i)
for j in range(i):
priorCovariance[i, j] = 1.0 / (1.0 + i + j)
errorCovariance = ot.CovarianceMatrix(2)
for i in range(2):
errorCovariance[i, i] = 2.0 + (1.0 + i) * (1.0 + i)
for j in range(i):
errorCovariance[i, j] = 1.0 / (1.0 + i + j)
globalErrorCovariance = ot.CovarianceMatrix(2 * m)
for i in range(2 * m):
globalErrorCovariance[i, i] = 2.0 + (1.0 + i) * (1.0 + i)
for j in range(i):
globalErrorCovariance[i, j] = 1.0 / (1.0 + i + j)
methods = ["SVD", "QR", "Cholesky"]
for method in methods:
print("method=", method)
# 1. Check with local error covariance
print("Local error covariance")
algo = ot.GaussianLinearCalibration(
model, x, y, candidate, priorCovariance, errorCovariance, method
)
algo.run()
result = algo.getResult()
# Analysis of the results
# Maximum A Posteriori estimator
thetaMAP = result.getParameterMAP()
exactTheta = ot.Point([5.69186, 0.0832132, 0.992301])
rtol = 1.0e-2
assert_almost_equal(thetaMAP, exactTheta, rtol)
# Covariance matrix of theta
thetaPosterior = result.getParameterPosterior()
covarianceThetaStar = matrixToSample(thetaPosterior.getCovariance())
exactCovarianceTheta = ot.Sample(
[
[0.308302, -0.000665387, 6.81135e-05],
[-0.000665387, 8.36243e-06, -8.86775e-07],
[6.81135e-05, -8.86775e-07, 9.42234e-08],
]
)
assert_almost_equal(covarianceThetaStar, exactCovarianceTheta)
# Check other fields
print("result=", result)
# Draw result
graph = result.drawParameterDistributions()
graph = result.drawResiduals()
graph = result.drawObservationsVsInputs()
graph = result.drawObservationsVsPredictions()
# 2. Check with global error covariance
print("Global error covariance")
algo = ot.GaussianLinearCalibration(
model, x, y, candidate, priorCovariance, globalErrorCovariance, method
)
algo.run()
result = algo.getResult()
# Analysis of the results
# Maximum A Posteriori estimator
thetaMAP = result.getParameterMAP()
exactTheta = ot.Point([3.4397, 0.095908, 0.99096])
rtol = 1.0e-2
assert_almost_equal(thetaMAP, exactTheta, rtol)
# Covariance matrix of theta
thetaPosterior = result.getParameterPosterior()
covarianceThetaStar = matrixToSample(thetaPosterior.getCovariance())
exactCovarianceTheta = ot.Sample(
[
[1.27112112e00, -4.52977089e-03, 4.71588017e-04],
[-4.52977089e-03, 5.93651856e-04, -6.36371482e-05],
[4.71588017e-04, -6.36371482e-05, 6.84130285e-06],
]
)
assert_almost_equal(covarianceThetaStar, exactCovarianceTheta)
# Check other fields
print("result=", result)
|