1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
ot.PlatformInfo.SetNumericalPrecision(2)
m = 10
x = [[0.5 + i] for i in range(m)]
inVars = ["a", "b", "c", "x"]
formulas = ["a + b * exp(c * x)", "(a * x^2 + b) / (c + x^2)"]
model = ot.SymbolicFunction(inVars, formulas)
p_ref = [2.8, 1.2, 0.5]
params = [0, 1, 2]
modelX = ot.ParametricFunction(model, params, p_ref)
y = modelX(x)
y += ot.Normal([0.0] * 2, [0.05] * 2, ot.IdentityMatrix(2)).getSample(m)
candidate = [1.0] * 3
priorCovariance = ot.CovarianceMatrix(3)
for i in range(3):
priorCovariance[i, i] = 3.0 + (1.0 + i) * (1.0 + i)
for j in range(i):
priorCovariance[i, j] = 1.0 / (1.0 + i + j)
errorCovariance = ot.CovarianceMatrix(2)
for i in range(2):
errorCovariance[i, i] = 2.0 + (1.0 + i) * (1.0 + i)
for j in range(i):
errorCovariance[i, j] = 1.0 / (1.0 + i + j)
globalErrorCovariance = ot.CovarianceMatrix(2 * m)
for i in range(2 * m):
globalErrorCovariance[i, i] = 2.0 + (1.0 + i) * (1.0 + i)
for j in range(i):
globalErrorCovariance[i, j] = 1.0 / (1.0 + i + j)
bootstrapSizes = [0, 30]
for bootstrapSize in bootstrapSizes:
algo = ot.GaussianNonLinearCalibration(
modelX, x, y, candidate, priorCovariance, errorCovariance
)
algo.setBootstrapSize(bootstrapSize)
algo.run()
# To avoid discrepance between the platforms with or without CMinpack
print("result (Auto)=", algo.getResult().getParameterMAP())
multiStartSize = 10
algo.setOptimizationAlgorithm(
ot.MultiStart(
ot.TNC(),
ot.LowDiscrepancyExperiment(
ot.SobolSequence(),
ot.Normal(
candidate, ot.CovarianceMatrix(ot.Point(candidate).getDimension())
),
multiStartSize,
).generate(),
)
)
algo.run()
result = algo.getResult()
# To avoid discrepance between the platforms with or without CMinpack
print("result (TNC)=", result.getParameterMAP())
print("error=", result.getObservationsError())
algo = ot.GaussianNonLinearCalibration(
modelX, x, y, candidate, priorCovariance, globalErrorCovariance
)
algo.setBootstrapSize(bootstrapSize)
algo.run()
result = algo.getResult()
print("result (Global)=", result.getParameterMAP())
# Draw result
graph = result.drawParameterDistributions()
graph = result.drawResiduals()
graph = result.drawObservationsVsInputs()
graph = result.drawObservationsVsPredictions()
# unobserved inputs
p_ref = [2.8, 1.2, 0.5, 2.0]
params = [0, 1, 2, 3]
modelX = ot.ParametricFunction(model, params, p_ref)
x = ot.Sample(m, 0)
y = modelX(x)
y += ot.Normal([0.0] * 2, [0.05] * 2, ot.IdentityMatrix(2)).getSample(m)
priorCovariance = ot.CovarianceMatrix(4)
for i in range(4):
priorCovariance[i, i] = 3.0 + (1.0 + i) * (1.0 + i)
for j in range(i):
priorCovariance[i, j] = 1.0 / (1.0 + i + j)
candidate = [1.0] * 4
algo = ot.GaussianNonLinearCalibration(
modelX, x, y, candidate, priorCovariance, errorCovariance
)
algo.run()
result = algo.getResult()
ot.PlatformInfo.SetNumericalPrecision(2)
print("result (unobs.)=", result.getParameterMAP())
print("error=", result.getObservationsError())
# test output at mean
modelX.setParameter(result.getParameterPrior().getMean())
outputAtPriorMean = modelX(x)
ott.assert_almost_equal(result.getOutputAtPriorMean(), outputAtPriorMean)
modelX.setParameter(result.getParameterPosterior().getMean())
outputAtPosteriorMean = modelX(x)
ott.assert_almost_equal(result.getOutputAtPosteriorMean(), outputAtPosteriorMean)
|