1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
import openturns as ot
from openturns.experimental import GaussianProcessFitter
import openturns.testing as ott
ot.PlatformInfo.SetNumericalPrecision(4)
ot.TESTPREAMBLE()
def use_case_1(X, Y):
"""
optim problem (scale)
Dirac model
"""
basis = ot.LinearBasisFactory(inputDimension).build()
# Case of a misspecified covariance model
covarianceModel = ot.DiracCovarianceModel(inputDimension)
algo = GaussianProcessFitter(X, Y, covarianceModel, basis)
assert algo.getOptimizeParameters()
assert algo.getKeepCholeskyFactor()
algo.setKeepCholeskyFactor(False)
algo.run()
cov_amplitude = [0.19575]
trend_coefficients = [-0.1109, 1.0149]
result = algo.getResult()
ott.assert_almost_equal(
result.getCovarianceModel().getAmplitude(), cov_amplitude, 1e-4, 1e-4
)
ott.assert_almost_equal(
result.getTrendCoefficients(), trend_coefficients, 1e-4, 1e-4
)
def use_case_2(X, Y):
"""
No optim with Dirac model
"""
basis = ot.LinearBasisFactory(inputDimension).build()
# Case of a misspecified covariance model
covarianceModel = ot.DiracCovarianceModel(inputDimension)
algo = GaussianProcessFitter(X, Y, covarianceModel, basis)
assert algo.getKeepCholeskyFactor()
algo.setKeepCholeskyFactor(False)
algo.setOptimizeParameters(False)
algo.run()
cov_amplitude = [1]
trend_coefficients = [-0.1109, 1.01498]
result = algo.getResult()
ott.assert_almost_equal(
result.getCovarianceModel().getAmplitude(), cov_amplitude, 1e-4, 1e-4
)
ott.assert_almost_equal(
result.getTrendCoefficients(), trend_coefficients, 1e-4, 1e-4
)
def use_case_3(X, Y):
"""
full optim problem (scale)
analytical variance estimate
"""
basis = ot.LinearBasisFactory(inputDimension).build()
# Case of a misspecified covariance model
covarianceModel = ot.AbsoluteExponential(inputDimension)
algo = GaussianProcessFitter(X, Y, covarianceModel, basis)
assert algo.getOptimizeParameters()
algo.setKeepCholeskyFactor(False)
algo.run()
cov_param = [0.1327, 0.1956]
trend_coefficients = [-0.1034, 1.0141]
result = algo.getResult()
assert (
algo.getOptimizationAlgorithm().getImplementation().getClassName() == "Cobyla"
)
ott.assert_almost_equal(
result.getCovarianceModel().getParameter(), cov_param, 1e-4, 1e-4
)
ott.assert_almost_equal(
result.getTrendCoefficients(), trend_coefficients, 1e-4, 1e-4
)
def use_case_4(X, Y):
"""
optim problem (scale)
Biased variance estimate
"""
ot.ResourceMap.SetAsBool("GeneralLinearModelAlgorithm-UnbiasedVariance", False)
basis = ot.LinearBasisFactory(inputDimension).build()
# Case of a misspecified covariance model
covarianceModel = ot.AbsoluteExponential(inputDimension)
algo = GaussianProcessFitter(X, Y, covarianceModel, basis)
assert algo.getKeepCholeskyFactor()
assert algo.getOptimizeParameters()
algo.setKeepCholeskyFactor(False)
algo.run()
cov_param = [0.1327, 0.1956]
trend_coefficients = [-0.1034, 1.0141]
result = algo.getResult()
assert (
algo.getOptimizationAlgorithm().getImplementation().getClassName() == "Cobyla"
)
ott.assert_almost_equal(
result.getCovarianceModel().getParameter(), cov_param, 1e-4, 1e-4
)
ott.assert_almost_equal(
result.getTrendCoefficients(), trend_coefficients, 1e-4, 1e-4
)
def use_case_5(X, Y):
"""
full optim problem (scale, amplitude)
"""
ot.ResourceMap.SetAsBool("GaussianProcessFitter-UnbiasedVariance", False)
ot.ResourceMap.SetAsBool(
"GaussianProcessFitter-UseAnalyticalAmplitudeEstimate", False
)
basis = ot.LinearBasisFactory(inputDimension).build()
# Case of a misspecified covariance model
covarianceModel = ot.AbsoluteExponential(inputDimension)
algo = GaussianProcessFitter(X, Y, covarianceModel, basis)
assert algo.getKeepCholeskyFactor()
assert algo.getOptimizeParameters()
algo.setKeepCholeskyFactor(False)
bounds = ot.Interval([1e-2] * 2, [100] * 2)
algo.setOptimizationBounds(bounds)
algo.run()
cov_param = [0.1327, 0.19068]
trend_coefficients = [-0.1034, 1.0141]
result = algo.getResult()
assert (
algo.getOptimizationAlgorithm().getImplementation().getClassName() == "Cobyla"
)
ott.assert_almost_equal(
result.getCovarianceModel().getParameter(), cov_param, 1e-4, 1e-4
)
ott.assert_almost_equal(
result.getTrendCoefficients(), trend_coefficients, 1e-4, 1e-4
)
def use_case_6(X, Y):
ot.RandomGenerator.SetSeed(0)
covarianceModel = ot.AbsoluteExponential()
algo = GaussianProcessFitter(X, Y, covarianceModel)
assert algo.getKeepCholeskyFactor()
algo.setKeepCholeskyFactor(False)
assert algo.getOptimizeParameters()
algo.run()
result = algo.getResult()
cov_param = [15.6, 2.3680]
assert (
algo.getOptimizationAlgorithm().getImplementation().getClassName() == "Cobyla"
)
ott.assert_almost_equal(
result.getCovarianceModel().getParameter(), cov_param, 1e-4, 1e-4
)
ott.assert_almost_equal(result.getTrendCoefficients(), [])
if __name__ == "__main__":
ot.RandomGenerator.SetSeed(0)
sampleSize = 40
inputDimension = 1
# Create the function to estimate
model = ot.SymbolicFunction(["x0"], ["x0"])
X = ot.Sample(sampleSize, inputDimension)
for i in range(sampleSize):
X[i, 0] = 3.0 + (8.0 * i) / sampleSize
Y = model(X)
# Add a small noise to data
Y += (
ot.GaussianProcess(ot.AbsoluteExponential([0.1], [0.2]), ot.Mesh(X))
.getRealization()
.getValues()
)
use_case_1(X, Y)
use_case_2(X, Y)
use_case_3(X, Y)
use_case_4(X, Y)
use_case_5(X, Y)
use_case_6(X, Y)
|