File: t_GeneralizedExtremeValueFactory_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (214 lines) | stat: -rwxr-xr-x 8,282 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott
from openturns.usecases import coles

ot.TESTPREAMBLE()
ot.Log.Show(ot.Log.INFO)

size = 10000
distribution = ot.GeneralizedExtremeValue(2.0, 1.5, -0.15)
sample = distribution.getSample(size)
factory = ot.GeneralizedExtremeValueFactory()

estimated_bic_selection = factory.build(sample)
print("Estimated distribution (BIC selection)=", repr(estimated_bic_selection))
ott.assert_almost_equal(
    estimated_bic_selection.getParameter(), distribution.getParameter(), 5e-2, 5e-2
)

default_distribution = factory.build()
print("Default distribution=", default_distribution)
assert (
    default_distribution.getParameter() == ot.GeneralizedExtremeValue().getParameter()
)

estimated_param = factory.build(distribution.getParameter())
print("Distribution from parameters=", estimated_param)
assert estimated_param.getParameter() == distribution.getParameter(), "wrong parameters"

estimated_bic_selection2 = factory.buildAsGeneralizedExtremeValue(sample)
print("Estimated GeneralizedExtremeValue (BIC selection)=", estimated_bic_selection2)
assert estimated_bic_selection2.__class__.__name__ == "GeneralizedExtremeValue"

default_distribution2 = factory.buildAsGeneralizedExtremeValue()
print("Default GeneralizedExtremeValue=", default_distribution2)
assert (
    default_distribution2.getParameter() == ot.GeneralizedExtremeValue().getParameter()
)
assert default_distribution2.__class__.__name__ == "GeneralizedExtremeValue"

estimated_param2 = factory.buildAsGeneralizedExtremeValue(distribution.getParameter())
print("GeneralizedExtremeValue from parameters=", estimated_param2)
assert (
    estimated_param2.getParameter() == distribution.getParameter()
), "wrong parameters"
assert estimated_param2.__class__.__name__ == "GeneralizedExtremeValue"

estimated_mle = factory.buildMethodOfLikelihoodMaximization(sample)
print("Estimated GeneralizedExtremeValue (MLE)=", estimated_mle)
ott.assert_almost_equal(
    estimated_mle.getParameter(), distribution.getParameter(), 1e-2, 1e-2
)

estimated_prof_mle = factory.buildMethodOfXiProfileLikelihood(sample, 1)
print("Estimated GeneralizedExtremeValue (profile MLE)=", estimated_prof_mle)
ott.assert_almost_equal(
    estimated_mle.getParameter(), distribution.getParameter(), 1e-2, 1e-2
)

# try MLE on multiple parameters
pdist = ot.JointDistribution(
    [
        ot.Normal(0.0, 2.0),
        ot.TruncatedNormal(1.0, 2.0, 1e-6, 10.0),
        ot.Uniform(-0.9, 0.9),
    ]
)
for p in pdist.getSample(10):
    distribution = factory.buildAsGeneralizedExtremeValue(p)
    print("distribution=", repr(distribution))

    sample_p = distribution.getSample(size)

    estimated_mle = factory.buildMethodOfLikelihoodMaximization(sample_p)
    print("Estimated GeneralizedExtremeValue (MLE)=", estimated_mle)
    mu, sigma, xi = estimated_mle.getParameter()
    ott.assert_almost_equal(mu, distribution.getMu(), 5e-2, 2e-1)
    ott.assert_almost_equal(sigma, distribution.getSigma(), 1e-2, 5e-2)
    ott.assert_almost_equal(xi, distribution.getXi(), 1e-2, 5e-2)

# check parameters distribution is gaussian
estimator = factory.buildEstimator(sample)
print(estimator)
assert (
    estimator.getParameterDistribution().getImplementation().__class__.__name__
    == "Normal"
)

estimator_prof_mle = factory.buildMethodOfXiProfileLikelihoodEstimator(sample)
assert (
    estimator_prof_mle.getParameterDistribution().getImplementation().__class__.__name__
    == "Normal"
)

# specific check for profile likelihood
xi = estimator_prof_mle.getParameter()
try:
    ci = estimator_prof_mle.getParameterConfidenceInterval()
    print("profile MLE estimator xi=", xi, ci)
    assert [xi] in ci, "xi should be inside confidence interval"
except Exception as exception:
    print(exception)

graph = estimator_prof_mle.drawProfileLikelihoodFunction()

# specific check for R maxima
sample_rmax = coles.Coles().venice[:, 1:]
print("sample_rmax=", sample_rmax)
estimated_rmax = factory.buildMethodOfLikelihoodMaximization(sample_rmax)
print("Estimated GeneralizedExtremeValue (R maxima)=", estimated_rmax)
# These reference values give a better likelihood than the ones given by Coles
ott.assert_almost_equal(
    estimated_rmax.getParameter(), [116.868, 11.8544, -0.107984], 1e-2, 1e-2
)

estimator_rmax = factory.buildMethodOfLikelihoodMaximizationEstimator(sample_rmax)
assert (
    estimator_rmax.getParameterDistribution().getImplementation().__class__.__name__
    == "Normal"
)

# specific check for covariates
fremantle = coles.Coles().fremantle
timeStamps = fremantle[:, 0]
muIndices = [0]  # linear
sigmaIndices = []  # stationary
xiIndices = []  # stationary
muLink = ot.SymbolicFunction(["x"], ["1.0*x"])
estimator_covariate = factory.buildCovariates(
    fremantle[:, 1], timeStamps, muIndices, sigmaIndices, xiIndices, muLink
)
beta = estimator_covariate.getOptimalParameter()
print("beta*=", beta)
ott.assert_almost_equal(beta, [0.00203333, -2.4751, 0.124301, -0.125008], 1e-2, 1e-2)
beta_dist = estimator_covariate.getParameterDistribution()
print("beta dist=", beta_dist)
assert (
    beta_dist.getImplementation().__class__.__name__ == "Normal"
), "wrong distribution"
cov_ref = [
    [3.11388e-09, -6.05561e-06, -1.99653e-08, 2.10413e-07],
    [-6.05561e-06, 0.0117791, 3.93182e-05, -0.000414466],
    [-1.99653e-08, 3.93182e-05, 1.51924e-06, -6.06597e-06],
    [2.10413e-07, -0.000414466, -6.06597e-06, 8.53944e-05],
]
ott.assert_almost_equal(
    ot.Matrix(beta_dist.getCovariance()), ot.Matrix(cov_ref), 1e-3, 1e-3
)
graph_mu1d = estimator_covariate.drawParameterFunction1D(0)
graph_mu2d = estimator_covariate.drawParameterFunction2D(0)
graph_q_mu1d = estimator_covariate.drawQuantileFunction1D(0.9)
graph_q_mu2d = estimator_covariate.drawQuantileFunction2D(0.9)

# functional
t0 = fremantle[0, 0]  # year of first record
constant = ot.SymbolicFunction(["t"], ["1.0"])
basis = ot.Basis([constant, ot.SymbolicFunction(["t"], ["t"])])
muIndices = [0, 1]  # linear
sigmaIndices = [0]  # stationary
xiIndices = [0]  # stationary
estimator_timevar = factory.buildTimeVarying(
    fremantle[:, 1], timeStamps, basis, muIndices, sigmaIndices, xiIndices
)
beta = estimator_timevar.getOptimalParameter()
print("beta*=", beta)
ott.assert_almost_equal(beta, [1.38216, 0.187033, 0.124317, -0.125086], 1e-2, 1e-2)
beta_dist = estimator_timevar.getParameterDistribution()
print("beta dist=", beta_dist)
assert (
    beta_dist.getImplementation().__class__.__name__ == "Normal"
), "wrong distribution"
cov_ref = [
    [9.49362e-06, -1.34867e-05, 1.43649e-06, -1.51103e-05],
    [-1.34867e-05, 2.65117e-05, -1.85843e-06, 1.93419e-05],
    [1.43649e-06, -1.85843e-06, 1.52237e-06, -6.07642e-06],
    [-1.51103e-05, 1.93419e-05, -6.07642e-06, 8.52864e-05],
]
ott.assert_almost_equal(
    ot.Matrix(beta_dist.getCovariance()), ot.Matrix(cov_ref), 1e-3, 1e-3
)
dist0 = estimator_timevar.getDistribution(t0)
print(dist0)
assert dist0.getImplementation().__class__.__name__ == "GeneralizedExtremeValue"
graph_param = estimator_timevar.drawParameterFunction(0)
graph_quantile = estimator_timevar.drawQuantileFunction(0.99)

# specific check for model selection
estimator_mle = factory.buildMethodOfLikelihoodMaximizationEstimator(fremantle[:, 1])
result_deviance = ot.HypothesisTest.LikelihoodRatioTest(
    3, estimator_mle.getLogLikelihood(), 4, estimator_timevar.getLogLikelihood()
)
print(result_deviance)
ott.assert_almost_equal(result_deviance.getStatistic(), 12.674, 1e-2, 1e-2)
assert not result_deviance.getBinaryQualityMeasure(), "H0 (stationary model) accepted"

# specific check for return level
zm = factory.buildReturnLevelEstimator(estimator_mle, 10.0)
print("zm=", zm)
ott.assert_almost_equal(zm, ot.Normal(1.73377, 0.0228792), 1e-2, 1e-2)

# specific check for return level via profile likelihood
estimator_prof_rl = factory.buildReturnLevelProfileLikelihoodEstimator(
    fremantle[:, 1], 10.0
)
print(estimator_prof_rl)
zm = estimator_prof_rl.getParameter()
try:
    ci = estimator_prof_rl.getParameterConfidenceInterval()
    print("profile return level estimator zm=", zm, ci)
    assert [zm] in ci, "zm should be inside confidence interval"
except Exception as exception:
    print(exception)
graph = estimator_prof_rl.drawProfileLikelihoodFunction()