File: t_GeneralizedExtremeValue_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (127 lines) | stat: -rwxr-xr-x 4,676 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

all_cases = [
    ot.GeneralizedExtremeValue(2.0, 1.5, -0.15),
    ot.GeneralizedExtremeValue(2.0, 1.5, 0.0),
    ot.GeneralizedExtremeValue(2.0, 1.5, 0.15),
]
for i in range(len(all_cases)):
    distribution = all_cases[i]
    print("#" * 50)
    print("Distribution ", distribution)

    for dist in ["WeibullMax", "Frechet", "Gumbel"]:
        try:
            eval("print('conversion as ', distribution.as" + dist + "())")
        except Exception:
            pass

    # Is this distribution elliptical ?
    print("Elliptical = ", distribution.isElliptical())

    # Is this distribution continuous ?
    print("Continuous = ", distribution.isContinuous())

    # Test for realization of distribution
    oneRealization = distribution.getRealization()
    print("oneRealization=", oneRealization)

    # Define a point
    point = [1.0] * distribution.getDimension()
    print("Point= ", point)

    # Show PDF and CDF of point
    DDF = distribution.computeDDF(point)
    print("ddf     =", DDF)
    LPDF = distribution.computeLogPDF(point)
    print("log pdf=", ot.Point(1, LPDF))
    PDF = distribution.computePDF(point)
    print("pdf     =", ot.Point(1, PDF))
    CDF = distribution.computeCDF(point)
    print("cdf=", ot.Point(1, CDF))
    CCDF = distribution.computeComplementaryCDF(point)
    print("ccdf=", ot.Point(1, CCDF))
    Survival = distribution.computeSurvivalFunction(point)
    print("survival=", ot.Point(1, Survival))
    InverseSurvival = distribution.computeInverseSurvivalFunction(0.95)
    print("Inverse survival=", InverseSurvival)
    print(
        "Survival(inverse survival)=",
        ot.Point(1, distribution.computeSurvivalFunction(InverseSurvival)),
    )
    PDFgr = distribution.computePDFGradient(point)
    print("pdf gradient     =", PDFgr)
    CDFgr = distribution.computeCDFGradient(point)
    print("cdf gradient     =", CDFgr)
    quantile = distribution.computeQuantile(0.95)
    print("quantile=", quantile)
    rl = distribution.computeReturnLevel(10.0)
    print(f"return level={rl:.6f}")
    print("cdf(quantile)=", distribution.computeCDF(quantile))
    print("entropy=%.6f" % distribution.computeEntropy())
    # Confidence regions
    prob, threshold = distribution.computeMinimumVolumeIntervalWithMarginalProbability(
        0.95
    )
    print("Minimum volume interval=", prob)
    print("threshold=", threshold)
    levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
    print("Minimum volume level set=", levelSet)
    print("beta=", ot.Point(1, beta))
    (
        interval,
        beta,
    ) = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
    print("Bilateral confidence interval=", interval)
    print("beta=", ot.Point(1, beta))
    (
        interval,
        beta,
    ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, False
    )
    print("Unilateral confidence interval (lower tail)=", interval)
    print("beta=", ot.Point(1, beta))
    (
        interval,
        beta,
    ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, True
    )
    print("Unilateral confidence interval (upper tail)=", interval)
    print("beta=", ot.Point(1, beta))
    mean = distribution.getMean()
    print("mean=", mean)
    standardDeviation = distribution.getStandardDeviation()
    print("standard deviation=", standardDeviation)
    skewness = distribution.getSkewness()
    print("skewness=", skewness)
    kurtosis = distribution.getKurtosis()
    print("kurtosis=", kurtosis)
    covariance = distribution.getCovariance()
    print("covariance=", covariance)
    correlation = distribution.getCorrelation()
    print("correlation=", correlation)
    spearman = distribution.getSpearmanCorrelation()
    print("spearman=", spearman)
    kendall = distribution.getKendallTau()
    print("kendall=", kendall)
    parameters = distribution.getParametersCollection()
    print("parameters=", parameters)
    print("Standard representative=", distribution.getStandardRepresentative())
    print("mu=", distribution.getMu())
    print("sigma=", distribution.getSigma())
    print("xi=", distribution.getXi())
    print("Actual distribution=", distribution.getActualDistribution())
    distribution.setActualDistribution(distribution.getActualDistribution())
    print("Distribution from actual distribution=", distribution)

    ot.Log.Show(ot.Log.TRACE)
    validation = ott.DistributionValidation(distribution)
    validation.skipMinimumVolumeLevelSet()
    validation.run()