File: t_GeneralizedParetoFactory_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (181 lines) | stat: -rwxr-xr-x 7,109 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott
from openturns.usecases import coles

ot.TESTPREAMBLE()
ot.Log.Show(ot.Log.INFO)

size = 10000
factory = ot.GeneralizedParetoFactory()
for xi in [-0.75, 0.0, 0.75]:
    distribution = ot.GeneralizedPareto(2.5, xi, 0.5)
    sample = distribution.getSample(size)
    estimatedDistribution = factory.build(sample)
    print("Distribution          =", distribution)
    print("Estimated distribution=", estimatedDistribution)
    ott.assert_almost_equal(
        estimatedDistribution.getParameter(), distribution.getParameter(), 1e-1, 1e-1
    )
    estimatedGeneralizedPareto = factory.buildAsGeneralizedPareto(sample)
    print("GeneralizedPareto          =", distribution)
    print("Estimated generalizedPareto=", estimatedGeneralizedPareto)
    assert (
        estimatedGeneralizedPareto.__class__.__name__ == "GeneralizedPareto"
    ), "wrong name"

    # method of moments
    if xi <= 0.0:
        estimatedDistribution = factory.buildMethodOfMoments(sample)
        print("GeneralizedPareto from moments=", estimatedDistribution)
        ott.assert_almost_equal(
            estimatedDistribution.getParameter(),
            distribution.getParameter(),
            1e-1,
            1e-1,
        )

    # exponential regression
    estimatedDistribution = factory.buildMethodOfExponentialRegression(sample)
    print("GeneralizedPareto from exponential regression=", estimatedDistribution)
    ott.assert_almost_equal(
        estimatedDistribution.getParameter(), distribution.getParameter(), 1e-1, 1e-1
    )

    # pwm
    if xi >= -0.5:
        estimatedDistribution = factory.buildMethodOfProbabilityWeightedMoments(sample)
        print("GeneralizedPareto from pwm=", estimatedDistribution)
        ott.assert_almost_equal(
            estimatedDistribution.getParameter(),
            distribution.getParameter(),
            1e-1,
            1e-1,
        )

estimatedDistribution = factory.build()
ott.assert_almost_equal(estimatedDistribution.getParameter(), [1.0, 0.0, 0.0])
print("Default distribution=", estimatedDistribution)
estimatedDistribution = factory.build(distribution.getParameter())
print("Distribution from parameters=", estimatedDistribution)
estimatedGeneralizedPareto = factory.buildAsGeneralizedPareto()
assert (
    estimatedGeneralizedPareto.__class__.__name__ == "GeneralizedPareto"
), "wrong name"
print("Default generalizedPareto=", estimatedGeneralizedPareto)
estimatedGeneralizedPareto = factory.buildAsGeneralizedPareto(
    distribution.getParameter()
)
assert (
    estimatedGeneralizedPareto.__class__.__name__ == "GeneralizedPareto"
), "wrong name"
print("GeneralizedPareto from parameters=", estimatedGeneralizedPareto)
ott.assert_almost_equal(
    estimatedGeneralizedPareto.getParameter(), distribution.getParameter()
)

if not ot.PlatformInfo.HasFeature("bison"):
    exit(0)

# mean residual life
sample = coles.Coles().rain
graph = factory.drawMeanResidualLife(sample)

# MLE
u = 30.0
estimator_mle = factory.buildMethodOfLikelihoodMaximizationEstimator(sample, u)
print("MLE estimator=", estimator_mle)
inf_dist = estimator_mle.getDistribution()
print("GPD from MLE=", inf_dist)
pref_mle = [7.44573, 0.184112, 30.0]
ott.assert_almost_equal(inf_dist.getParameter(), pref_mle, 1e-2, 1e-2)
print("parameter dist=", estimator_mle.getParameterDistribution())
print(estimator_mle.getParameterDistribution().getCovariance())
cov_ref = [[0.920412, -0.0655531, 0], [-0.0655531, 0.0102358, 0], [0, 0, 0]]
ott.assert_almost_equal(
    ot.Matrix(estimator_mle.getParameterDistribution().getCovariance()),
    ot.Matrix(cov_ref),
    2e-3,
    1e-5,
)
ott.assert_almost_equal(estimator_mle.getLogLikelihood(), -485.094)

# specific check for covariates
covariates = ot.Sample([[i + 1] for i in range(sample.getSize())])
sigmaIndices = [0]  # linear
xiIndices = []  # stationary
sigmaLink = ot.SymbolicFunction(["x"], ["exp(x)"])
estimator_covariate = factory.buildCovariates(
    sample, u, covariates, sigmaIndices, xiIndices, sigmaLink
)
beta = estimator_covariate.getOptimalParameter()
print("beta*=", beta)
ott.assert_almost_equal(beta, [1.9582e-05, 1.80441, 0.197766], 1e-2, 1e-2)
beta_dist = estimator_covariate.getParameterDistribution()
print("beta dist=", beta_dist)
graph_sigma1d = estimator_covariate.drawParameterFunction1D(0)
graph_sigma2d = estimator_covariate.drawParameterFunction2D(0)
graph_q_sigma1d = estimator_covariate.drawQuantileFunction1D(0.9)
graph_q_sigma2d = estimator_covariate.drawQuantileFunction2D(0.9)

# functional
timeStamps = ot.Sample([[i + 1] for i in range(sample.getSize())])
constant = ot.SymbolicFunction(["t"], ["1.0"])
basis = ot.Basis([ot.SymbolicFunction(["t"], ["t"]), constant])
sigmaIndices = [0, 1]  # linear
xiIndices = [1]  # stationary
sigmaLink = ot.SymbolicFunction(["x"], ["exp(x)"])
estimator_timevar = factory.buildTimeVarying(
    sample, u, timeStamps, basis, sigmaIndices, xiIndices, sigmaLink
)
beta = estimator_timevar.getOptimalParameter()
print("beta*=", beta)
ott.assert_almost_equal(beta, [0.343272, 1.80443, 0.197766], 1e-2, 1e-2)
beta_dist = estimator_timevar.getParameterDistribution()
print("beta dist=", beta_dist)
t0 = timeStamps[0, 0]
dist0 = estimator_timevar.getDistribution(t0)
print(dist0)
assert dist0.getImplementation().__class__.__name__ == "GeneralizedPareto"
graph_param = estimator_timevar.drawParameterFunction(0)
graph_quantile = estimator_timevar.drawQuantileFunction(0.99)

# specific check for return level, see coles2001 p86
xm = factory.buildReturnLevelEstimator(estimator_mle, sample, 100.0 * 365.0)
print("xm=", xm)
ott.assert_almost_equal(xm.getMean(), [106.284], 1e-2, 1e-2)
ott.assert_almost_equal(xm.getCovariance()[0, 0], 433.145, 1e-2, 1e-2)

# specific check for return level via profile likelihood
estimator_prof_rl = factory.buildReturnLevelProfileLikelihoodEstimator(
    sample, u, 100.0 * 365.0
)
print(estimator_prof_rl)
zm = estimator_prof_rl.getParameter()
try:
    ci = estimator_prof_rl.getParameterConfidenceInterval()
    print("profile return level estimator zm=", zm, ci)
    assert [zm] in ci, "zm should be inside confidence interval"
except Exception as exception:
    print(exception)
ott.assert_almost_equal(ci.getLowerBound(), [80.8575], 1e-2, 1e-2)
ott.assert_almost_equal(ci.getUpperBound(), [184.988], 1e-2, 1e-2)
graph = estimator_prof_rl.drawProfileLikelihoodFunction()

# profile MLE (xi)
estimator_prof_mle = factory.buildMethodOfXiProfileLikelihoodEstimator(sample, u)
inf_dist = estimator_prof_mle.getDistribution()
print("Estimated GPD (profile MLE)=", inf_dist)
ott.assert_almost_equal(inf_dist.getParameter(), pref_mle, 1e-2, 1e-2)

# specific check for profile likelihood
xi = estimator_prof_mle.getParameter()
ci = estimator_prof_mle.getParameterConfidenceInterval()
print("profile MLE estimator xi=", xi, ci)
assert [xi] in ci, "xi should be inside confidence interval"
graph = estimator_prof_mle.drawProfileLikelihoodFunction()

# parameter stability
u_range = ot.Interval(0.5, 50.0)
graph = factory.drawParameterThresholdStability(sample, u_range)