1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
|
#! /usr/bin/env python
import openturns as ot
import math as m
ot.TESTPREAMBLE()
# Create a Haselgrove
sequence = ot.HaselgroveSequence(15)
print(repr(sequence))
# Create a numerical sample of the sequence
haselgroveSample = sequence.generate(10)
print(repr(haselgroveSample))
# Create another Haselgrove' sequence of dimension 2 to estimate Pi in [0
# 1)^2
dimension = 2
sequence = ot.HaselgroveSequence(dimension)
pointInsideCircle = 0
sampleSize = 1000
for i in range(sampleSize):
haselgrovePoint = sequence.generate()
print(haselgrovePoint.__repr__())
if haselgrovePoint.norm() < 1.0:
pointInsideCircle = pointInsideCircle + 1
probabilityEstimate = (1.0 * pointInsideCircle) / sampleSize
probability = m.pi / 4.0
relativeError = abs(probability - probabilityEstimate) / probability
print("sample size=", sampleSize)
print("relative error to Pi=%e" % relativeError)
|