File: t_HaselgroveSequence_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (32 lines) | stat: -rwxr-xr-x 895 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#! /usr/bin/env python

import openturns as ot
import math as m

ot.TESTPREAMBLE()


# Create a Haselgrove
sequence = ot.HaselgroveSequence(15)
print(repr(sequence))

# Create a numerical sample of the sequence
haselgroveSample = sequence.generate(10)
print(repr(haselgroveSample))

# Create another Haselgrove' sequence of dimension 2 to estimate Pi in [0
# 1)^2
dimension = 2
sequence = ot.HaselgroveSequence(dimension)
pointInsideCircle = 0
sampleSize = 1000
for i in range(sampleSize):
    haselgrovePoint = sequence.generate()
    print(haselgrovePoint.__repr__())
    if haselgrovePoint.norm() < 1.0:
        pointInsideCircle = pointInsideCircle + 1
probabilityEstimate = (1.0 * pointInsideCircle) / sampleSize
probability = m.pi / 4.0
relativeError = abs(probability - probabilityEstimate) / probability
print("sample size=", sampleSize)
print("relative error to Pi=%e" % relativeError)