1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Instantiate one distribution object
first = -1.5
ll = [1.0, 0.7, 1.2, 0.9]
h = [0.5, 1.5, 3.5, 2.5]
t = [first]
f = list()
for i in range(len(ll)):
t.append(t[i] + ll[i])
f.append(h[i] * ll[i])
distribution = ot.Histogram(t, f)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
distribution = ot.Histogram(first, ll, h)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
# Define a point
point = ot.Point(distribution.getDimension(), 1.0)
print("Point= ", repr(point))
# derivative of PDF with regards its arguments
DDF = distribution.computeDDF(point)
print("ddf =", repr(DDF))
# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf =%.6f" % PDF)
# derivative of the PDF with regards the parameters of the distribution
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f"
% distribution.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % distribution.computeEntropy())
# Confidence regions
interval, threshold = distribution.computeMinimumVolumeIntervalWithMarginalProbability(
0.95
)
print("Minimum volume interval=", interval)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
interval, beta = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(
0.95
)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, False)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, True)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))
mean = distribution.getMean()
print("mean=", repr(mean))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
print("Standard representative=", distribution.getStandardRepresentative())
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipParameters()
validation.skipMinimumVolumeLevelSet()
validation.run()
|