1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
matrix1 = ot.IdentityMatrix(2)
print("matrix1 = ", repr(matrix1))
pt = ot.Point()
pt.add(5.0)
pt.add(0.0)
print("pt = ", repr(pt))
result = ot.Point()
result = matrix1.solveLinearSystem(pt)
print("result = ", repr(result))
determinant = matrix1.computeDeterminant()
print("determinant = %.6f" % determinant)
ev = ot.ScalarCollection(2)
ev = matrix1.computeEigenValues()
print("ev = ", repr(ev))
if matrix1.isPositiveDefinite():
isSPD = "true"
else:
isSPD = "false"
print("isSPD = ", isSPD)
matrix2 = matrix1.computeCholesky()
print("matrix2 = ", repr(matrix2))
det, sgn = matrix1.computeLogAbsoluteDeterminant()
print(det)
assert det == 0.0, "wrong det"
sv = matrix1.computeSingularValues()
print(sv)
assert sv == [1.0] * 2, "wrong sv"
ev, u, vT = matrix1.computeSVD()
print(ev, u, vT)
assert ev == [1.0] * 2, "wrong svd"
ev, v = matrix1.computeEV()
print(ev, v)
assert ev == [1.0] * 2, "wrong ev"
tr = matrix1.transpose()
print(tr)
assert tr == matrix1, "transpose"
cov = ot.CovarianceMatrix(2)
prod = matrix1 @ cov
print(prod)
assert prod == matrix1, "product /cov"
|