File: t_IndependentMetropolisHastings_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (107 lines) | stat: -rwxr-xr-x 2,642 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott
import math

ot.TESTPREAMBLE()

ot.RandomGenerator.SetSeed(0)

# %%
# Test independentMetropolisHastings on Beta-Binomial conjugate model

# Define Beta-binomial model
a, b, lower, upper = 1.0, 1.0, 0.0, 1.0
n, p = 10, 0.5
prior = ot.Beta(a, b, lower, upper)
model = ot.Binomial(n, p)

# %%
# Simulate data and compute analytical posterior
x = model.getSample(1)
posterior = ot.Beta(a + x[0, 0], b + n - x[0, 0], lower, upper)

# %%
# Define IMH sampler
initialState = [p]
imh_sampler = ot.IndependentMetropolisHastings(
    prior, initialState, ot.Uniform(-1.0, 1.0), [0]
)
slf = ot.SymbolicFunction(["x"], [str(n), "x"])
imh_sampler.setLikelihood(model, x, slf)

# %%
# Generate posterior distribution sample
sampleSize = 10000
xSample = imh_sampler.getSample(sampleSize)

# %%
# Compare empirical to theoretical moments

ott.assert_almost_equal(
    xSample.computeMean(), posterior.getMean(), 0.0, 10.0 / math.sqrt(sampleSize)
)
ott.assert_almost_equal(
    xSample.computeStandardDeviation(),
    posterior.getStandardDeviation(),
    0.0,
    10.0 / math.sqrt(sampleSize),
)

# %%
# Draw the unnormalized probability density
# -----------------------------------------

ot.RandomGenerator.SetSeed(1)
lower_bound = 0.0
print(lower_bound)
upper_bound = 2.0 * math.pi
print(upper_bound)

# %%
# Independent Metropolis-Hastings
# -------------------------------
# Let us use a mixture distribution to approximate the target distribution.
#
# This approximation will serve as the instrumental distribution
# in the independent Metropolis-Hastings algorithm.

exp = ot.Exponential(1.0)
normal = ot.Normal(5.3, 0.4)
instrumentalDistribution = ot.Mixture([exp, normal], [0.9, 0.1])
print(instrumentalDistribution.getWeights())


# %%
# MetropolisHastings classes expect to receive the logarithm to the target density.

log_density = ot.SymbolicFunction(
    "x", "log(2 + sin(x)^2) - (2 + cos(3*x)^3 + sin(2*x)^3) * x"
)

initialState = ot.Point([3.0])  # not important in this case
support = ot.Interval([lower_bound], [upper_bound])
independentMH = ot.IndependentMetropolisHastings(
    log_density, support, initialState, instrumentalDistribution, [0]
)

print(independentMH.getRealization())

# %%
# Get a sample

sampleSize = 1000000
sample = independentMH.getSample(sampleSize)


# %%
# Compute posterior mean

mean_ref = 1.22498
posterior_mean = sample.computeMean()[0]
ott.assert_almost_equal(posterior_mean, mean_ref, 1e-5, 0)

std_ref = 1.61558
posterior_std = sample.computeStandardDeviation()[0]
ott.assert_almost_equal(posterior_std, std_ref, 1e-5, 0)