File: t_InverseChiSquare_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (82 lines) | stat: -rw-r--r-- 2,496 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
Distribution  InverseChiSquare(nu = 10.5)
Elliptical =  False
Continuous =  True
oneRealization= [0.0782188]
Point=  [0.190476]
ddf     = [-32.6097]
log pdf= 0.538526870446
pdf     =1.71348
cdf= 0.898124218121
ccdf= 0.101875781879
survival= 0.101875781879
characteristic function=(0.999474, 0.0224004)
log characteristic function=(-0.000274906, 0.0224084)
pdf gradient     = [-0.509672]
cdf gradient     = [0.0444498]
quantile= [0.235]
cdf(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=1 values=[0.0526499]
Survival(inverseSurvival)=0.950000
entropy=-1.631630
Minimum volume interval= [0.0358836, 0.238469]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 35.0308} with f=
MinimumVolumeLevelSetEvaluation(InverseChiSquare(nu = 10.5))
beta= [6.11368e-16]
Bilateral confidence interval= [0.0471602, 0.283384]
beta= [0.95]
Unilateral confidence interval (lower tail)= [0, 0.235]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.0526499, 85.793]
beta= [0.95]
mean= [0.117647]
covariance= [[ 0.00425872 ]]
correlation= [[ 1 ]]
spearman= [[ 1 ]]
kendall= [[ 1 ]]
parameters= [[nu : 10.5]]
Standard representative= InverseChiSquare(nu = 10.5)
standard deviation= [0.0652588]
skewness= [3.20493]
kurtosis= [35.5333]
Distribution  InverseChiSquare(nu = 15)
Elliptical =  False
Continuous =  True
oneRealization= [0.0839942]
Point=  [0.133333]
ddf     = [-67.8131]
log pdf= 0.643707583651
pdf     =1.90353
cdf= 0.942263113464
ccdf= 0.0577368865356
survival= 0.0577368865356
characteristic function=(0.999938, 0.0102561)
log characteristic function=(-9.55898e-06, 0.0102564)
pdf gradient     = [-0.594853]
cdf gradient     = [0.023973]
quantile= [0.137723]
cdf(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=1 values=[0.0400067]
Survival(inverseSurvival)=0.950000
entropy=-2.206222
Minimum volume interval= [0.0299545, 0.140394]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= -0.39369} with f=
MinimumVolumeLevelSetEvaluation(InverseChiSquare(nu = 15))
beta= [1.48244]
Bilateral confidence interval= [0.036379, 0.15969]
beta= [0.95]
Unilateral confidence interval (lower tail)= [0, 0.137723]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.0400067, 10.2372]
beta= [0.95]
mean= [0.0769231]
covariance= [[ 0.00107585 ]]
correlation= [[ 1 ]]
spearman= [[ 1 ]]
kendall= [[ 1 ]]
parameters= [[nu : 15]]
Standard representative= InverseChiSquare(nu = 15)
standard deviation= [0.0328001]
skewness= [2.08463]
kurtosis= [13.0952]