File: t_InverseNormal_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (33 lines) | stat: -rw-r--r-- 1,501 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Distribution  InverseNormal(mu = 2, lambda = 0.5)
Elliptical =  False
Continuous =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[0.632204]
Point=  class=Point name=Unnamed dimension=1 values=[3]
log pdf=-2.934264
pdf     =0.053170
cdf=0.834308
ccdf=0.165692
characteristic function= (0.130776955167+0.348768871351j)
quantile= class=Point name=Unnamed dimension=1 values=[8.26789]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[0.117535]
Survival(inverseSurvival)=0.950000
entropy=1.423751
Minimum volume interval= [0.0274495, 8.27076]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 4.73175} with f=
MinimumVolumeLevelSetEvaluation(InverseNormal(mu = 2, lambda = 0.5))
beta= [0.00881103]
Bilateral confidence interval= [0.0917281, 12.6739]
beta= [0.95]
Unilateral confidence interval (lower tail)= [0, 8.26789]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.117535, 472.248]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[2]
standard deviation= class=Point name=Unnamed dimension=1 values=[4]
skewness= class=Point name=Unnamed dimension=1 values=[6]
kurtosis= class=Point name=Unnamed dimension=1 values=[63]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[16]
parameters= [class=PointWithDescription name=X0 dimension=2 description=[mu,lambda] values=[2,0.5]]
Standard representative= InverseNormal(mu = 2, lambda = 0.5)