1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
|
#!/usr/bin/env python
import openturns as ot
import openturns.testing as ott
import sys
def progress(percent):
sys.stderr.write("-- progress=" + str(percent) + "%\n")
def stop():
sys.stderr.write("-- stop?\n")
return False
# Definition of objective function
f = ot.SymbolicFunction(["x1", "x2"], ["-(x2 - 2.0) * (x2 - 2.0)"])
# Definition of variables bounds
bounds = ot.Interval([-1.0, -1.0e19], [1.0, 1.0e19], [True, True], [True, True])
# Definition of constraints
# Constraints in OpenTURNS are defined as g(x) = 0 and h(x) >= 0
# No equality constraint -> nothing to do
# Inequality constraints:
g = ot.SymbolicFunction(["x1", "x2"], ["-(x1 * x1 + x2 - 1.0)"])
# Setting up problem
problem = ot.OptimizationProblem(f)
problem.setBounds(bounds)
problem.setEqualityConstraint(g)
algo = ot.Ipopt(problem)
algo.setStartingPoint([0.5, 1.5])
algo.setMaximumCallsNumber(10000)
algo.setProgressCallback(progress)
algo.setStopCallback(stop)
# ot.ResourceMap.AddAsScalar('Ipopt-max_cpu_time', 15.0)
algo.run()
result = algo.getResult()
print(" -- Optimal point = " + result.getOptimalPoint().__str__())
print(" -- Optimal value = " + result.getOptimalValue().__str__())
print(" -- Evaluation number = " + result.getInputSample().getSize().__str__())
ott.assert_almost_equal(result.getOptimalPoint(), [1.0, 0.0], 1e-5, 1e-4)
|