File: t_IsoProbabilisticTransformation_IndependentCopula.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (249 lines) | stat: -rwxr-xr-x 8,305 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()


def cleanSymmetricTensor(inSymmetricTensor):
    rowDim = inSymmetricTensor.getNbRows()
    colDim = inSymmetricTensor.getNbColumns()
    sheetDim = inSymmetricTensor.getNbSheets()
    for i in range(rowDim):
        for j in range(colDim):
            for k in range(sheetDim):
                inSymmetricTensor[i, j, k] = 1.0e-4 * round(
                    1.0e4 * inSymmetricTensor[i, j, k]
                )
                if abs(inSymmetricTensor[i, j, k]) < 1.0e-6:
                    inSymmetricTensor[i, j, k] = 0.0
    return inSymmetricTensor


meanPoint = ot.Point(1)
sigma = ot.Point(1)
R = ot.CorrelationMatrix(1)

# Create a collection of distribution
aCollection = ot.DistributionCollection()

aCollection.add(ot.Uniform(-1.0, 2.0))
aCollection.add(ot.Gamma(2.0, 2.0, 0.0))

dim = aCollection.getSize()

# Instantiate one distribution object
distribution = ot.JointDistribution(aCollection, ot.IndependentCopula(dim))
# Test for sampling
size = 10000
sample = distribution.getSample(size)
print("sample first=", repr(sample[0]), " last=", repr(sample[size - 1]))
print("sample mean=", repr(sample.computeMean()))
print("sample covariance=", repr(sample.computeCovariance()))

transform = distribution.getIsoProbabilisticTransformation()
print("isoprobabilistic transformation=", repr(transform))
transformedSample = transform(sample)
print(
    "transformed sample first=",
    repr(transformedSample[0]),
    " last=",
    repr(transformedSample[size - 1]),
)
print("transformed sample mean=", repr(transformedSample.computeMean()))
print("transformed sample covariance=", repr(transformedSample.computeCovariance()))

# Test for evaluation
inverseTransform = distribution.getInverseIsoProbabilisticTransformation()
print("inverse isoprobabilistic transformation=", repr(inverseTransform))
transformedBackSample = inverseTransform(transformedSample)
print(
    "transformed back sample first=",
    repr(transformedBackSample[0]),
    " last=",
    repr(transformedBackSample[size - 1]),
)
print("transformed back sample mean=", repr(transformedBackSample.computeMean()))
print(
    "transformed back sample covariance=",
    repr(transformedBackSample.computeCovariance()),
)
point = ot.Point(dim, 1.0)
print("point=", repr(point))
transformedPoint = transform(point)
print("transform value at point        =", repr(transformedPoint))
print("transform gradient at point     =", repr(transform.gradient(point)))
print(
    "transform gradient at point (FD)=",
    repr(
        ot.CenteredFiniteDifferenceGradient(1.0e-5, transform.getEvaluation()).gradient(
            point
        )
    ),
)
print(
    "transform hessian at point      =",
    repr(cleanSymmetricTensor(transform.hessian(point))),
)
print(
    "transform hessian at point (FD) =",
    repr(
        cleanSymmetricTensor(
            ot.CenteredFiniteDifferenceHessian(
                1.0e-4, transform.getEvaluation()
            ).hessian(point)
        )
    ),
)
print(
    "inverse transform value at transformed point        =",
    repr(inverseTransform(transformedPoint)),
)
print(
    "inverse transform gradient at transformed point     =",
    repr(inverseTransform.gradient(transformedPoint)),
)
print(
    "inverse transform gradient at transformed point (FD)=",
    repr(
        ot.CenteredFiniteDifferenceGradient(
            1.0e-5, inverseTransform.getEvaluation()
        ).gradient(transformedPoint)
    ),
)
print(
    "inverse transform hessian at transformed point      =",
    repr(cleanSymmetricTensor(inverseTransform.hessian(transformedPoint))),
)
print(
    "inverse transform hessian at transformed point (FD) =",
    repr(
        cleanSymmetricTensor(
            ot.CenteredFiniteDifferenceHessian(
                1.0e-4, inverseTransform.getEvaluation()
            ).hessian(transformedPoint)
        )
    ),
)

# Test for parameters
print("parameters gradient at point=", repr(transform.parameterGradient(point)))

# Validation using finite difference
eps = 1e-5
factor = 1.0 / (2.0 * eps)
gradient = ot.Matrix(5, 2)

# dT/dp0
coll = ot.DistributionCollection(dim)
coll[0] = ot.Uniform(-1.0 + eps, 2.0)
coll[1] = aCollection[1]
left = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
coll[0] = ot.Uniform(-1.0 - eps, 2.0)
right = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[0, 0] = dTdp[0]
gradient[0, 1] = dTdp[1]
# dT/dp1
coll = ot.DistributionCollection(dim)
coll[0] = ot.Uniform(-1.0, 2.0 + eps)
coll[1] = aCollection[1]
left = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
coll[0] = ot.Uniform(-1.0, 2.0 - eps)
right = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[1, 0] = dTdp[0]
gradient[1, 1] = dTdp[1]
# dT/dp2
coll = ot.DistributionCollection(dim)
coll[0] = aCollection[0]
coll[1] = ot.Gamma(2.0 + eps, 2.0, 0.0)
left = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
coll[1] = ot.Gamma(2.0 - eps, 2.0, 0.0)
right = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[2, 0] = dTdp[0]
gradient[2, 1] = dTdp[1]

# dT/dp3
coll = ot.DistributionCollection(dim)
coll[0] = aCollection[0]
coll[1] = ot.Gamma(2.0, 2.0 + eps, 0.0)
left = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
coll[1] = ot.Gamma(2.0, 2.0 - eps, 0.0)
right = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[3, 0] = dTdp[0]
gradient[3, 1] = dTdp[1]

# dT/dp4
coll = ot.DistributionCollection(dim)
coll[0] = aCollection[0]
coll[1] = ot.Gamma(2.0, 2.0, 0.0 + eps)
left = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
coll[1] = ot.Gamma(2.0, 2.0, 0.0 - eps)
right = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[4, 0] = dTdp[0]
gradient[4, 1] = dTdp[1]

print("parameters gradient (FD)    =", repr(gradient))

# Test for parameters
print(
    "(inverse) parameters gradient at point=",
    repr(inverseTransform.parameterGradient(point)),
)

# dT/dp0
coll = ot.DistributionCollection(dim)
coll[0] = ot.Uniform(-1.0 + eps, 2.0)
coll[1] = aCollection[1]
left = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
coll[0] = ot.Uniform(-1.0 - eps, 2.0)
right = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[0, 0] = dTdp[0]
gradient[0, 1] = dTdp[1]
# dT/dp1
coll = ot.DistributionCollection(dim)
coll[0] = ot.Uniform(-1.0, 2.0 + eps)
coll[1] = aCollection[1]
left = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
coll[0] = ot.Uniform(-1.0, 2.0 - eps)
right = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[1, 0] = dTdp[0]
gradient[1, 1] = dTdp[1]
# dT/dp2
coll = ot.DistributionCollection(dim)
coll[0] = aCollection[0]
coll[1] = ot.Gamma(2.0 + eps, 2.0, 0.0)
left = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
coll[1] = ot.Gamma(2.0 - eps, 2.0, 0.0)
right = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[2, 0] = dTdp[0]
gradient[2, 1] = dTdp[1]
# dT/dp3
coll = ot.DistributionCollection(dim)
coll[0] = aCollection[0]
coll[1] = ot.Gamma(2.0, 2.0 + eps, 0.0)
left = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
coll[1] = ot.Gamma(2.0, 2.0 - eps, 0.0)
right = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[3, 0] = dTdp[0]
gradient[3, 1] = dTdp[1]
# dT/dp4
coll = ot.DistributionCollection(dim)
coll[0] = aCollection[0]
coll[1] = ot.Gamma(2.0, 2.0, 0.0 + eps)
left = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
coll[1] = ot.Gamma(2.0, 2.0, 0.0 - eps)
right = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[4, 0] = dTdp[0]
gradient[4, 1] = dTdp[1]

print("(inverse) parameters gradient (FD)    =", repr(gradient))