File: t_IterativeMoments_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (74 lines) | stat: -rwxr-xr-x 2,692 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()
ot.RandomGenerator.SetSeed(0)

# We create a Sample
point1 = [10.0, 20.0]
point2 = [11.0, 21.0]
point3 = [12.0, 22.0]
point4 = [15.0, 25.0]
sample1 = ot.Sample([point1, point2, point3, point4])

referenceMean = sample1.computeMean()
referenceVariance = sample1.computeVariance()
referenceSkewness = sample1.computeSkewness()
referenceKurtosis = sample1.computeKurtosis()

mixedSample = ot.Sample(sample1)
mixedSample.add(point1)
mixedSample.add(point2)
mixedSample.add(point3)
mixedSample.add(point4)
referenceMixedMean = mixedSample.computeMean()
referenceMixedVariance = mixedSample.computeVariance()
referenceMixedSkewness = mixedSample.computeSkewness()
referenceMixedKurtosis = mixedSample.computeKurtosis()

# Iterative moments, one point at a time
dimension = 2
order = 4
iterPoint = ot.IterativeMoments(order, dimension)
iterPoint.increment(point1)
iterPoint.increment(point2)
iterPoint.increment(point3)
iterPoint.increment(point4)

ott.assert_almost_equal(iterPoint.getMean(), referenceMean)
ott.assert_almost_equal(iterPoint.getVariance(), referenceVariance)
ott.assert_almost_equal(iterPoint.getSkewness(), referenceSkewness)
ott.assert_almost_equal(iterPoint.getKurtosis(), referenceKurtosis)
ott.assert_almost_equal(iterPoint.getDimension(), 2)
ott.assert_almost_equal(iterPoint.getOrder(), 4)
ott.assert_almost_equal(iterPoint.getIterationNumber(), 4)


# Iterative moments, one single sample
iterSample = ot.IterativeMoments(order, dimension)
iterSample.increment(sample1)
ott.assert_almost_equal(iterSample.getMean(), referenceMean)
ott.assert_almost_equal(iterSample.getVariance(), referenceVariance)
ott.assert_almost_equal(iterSample.getSkewness(), referenceSkewness)
ott.assert_almost_equal(iterSample.getKurtosis(), referenceKurtosis)
ott.assert_almost_equal(iterSample.getDimension(), 2)
ott.assert_almost_equal(iterSample.getOrder(), 4)
ott.assert_almost_equal(iterSample.getIterationNumber(), 4)


# Iterative moments, sample and points
iterMixed = ot.IterativeMoments(4, dimension)
iterMixed.increment(sample1)
iterMixed.increment(point1)
iterMixed.increment(point2)
iterMixed.increment(point3)
iterMixed.increment(point4)
ott.assert_almost_equal(iterMixed.getMean(), referenceMixedMean)
ott.assert_almost_equal(iterMixed.getVariance(), referenceMixedVariance)
ott.assert_almost_equal(iterMixed.getSkewness(), referenceMixedSkewness)
ott.assert_almost_equal(iterMixed.getKurtosis(), referenceMixedKurtosis)
ott.assert_almost_equal(iterMixed.getDimension(), 2)
ott.assert_almost_equal(iterMixed.getOrder(), 4)
ott.assert_almost_equal(iterMixed.getIterationNumber(), 8)