File: t_JointByConditioningDistribution_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (31 lines) | stat: -rw-r--r-- 1,453 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Distribution  JointByConditioningDistribution(Y, X with X|Theta~Normal(Theta), Theta=f(Y), f=id_2, Y~JointDistribution(Uniform(a = 0, b = 1), Uniform(a = 1, b = 2), IndependentCopula(dimension = 2)))
Parameters  [[a_X0 : 0, b_X0 : 1, a_X1 : 1, b_X1 : 2]]
Mean  [0.5,1.5,0.5]
Elliptical distribution=  False
Elliptical copula=  False
Independent copula=  False
oneRealization= [0.629877,1.88281,-1.75408]
oneSample=     [ Y0         Y1         X0         ]
0 : [  0.347057   1.96942    2.72115   ]
1 : [  0.0632061  1.29276    0.515725  ]
2 : [  0.373767   1.73727    2.87065   ]
3 : [  0.92851    1.82081    2.3727    ]
4 : [  0.359802   1.95475    0.870026  ]
5 : [  0.085785   1.66073   -2.04474   ]
6 : [  0.0245595  1.41892   -0.104255  ]
7 : [  0.66134    1.48977    0.453587  ]
8 : [  0.345319   1.65598    1.08304   ]
9 : [  0.646334   1.06421    1.12074   ]
anotherSample mean= [0.498071,1.49953,0.504279]
anotherSample covariance= [[  0.0830803    0.000313403  0.0767514   ]
 [  0.000313403  0.0834798   -0.000108455 ]
 [  0.0767514   -0.000108455  2.37804     ]]
Point point=  [0.5, 1.5, 1.0]  pdf=0.251589  cdf=0.181637
Quantile= [0.982796,1.9828,3.87457]
CDF(quantile)= 0.95
conditional PDF=1.09340e-01
conditional CDF=9.08789e-01
conditional quantile=2.50000e+00
sequential conditional PDF= [1,1,0.10934]
sequential conditional CDF( [0.5, 1.5, 2.5] )= [0.5,0.5,0.908789]
sequential conditional quantile( [0.5,0.5,0.908789] )= [0.5,1.5,2.5]