File: t_JointByConditioningDistribution_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (84 lines) | stat: -rwxr-xr-x 2,739 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

conditionedDistribution = ot.Normal()
conditioningDistribution = ot.JointDistribution(
    [ot.Uniform(0.0, 1.0), ot.Uniform(1.0, 2.0)]
)
distribution = ot.JointByConditioningDistribution(
    conditionedDistribution, conditioningDistribution
)
dim = distribution.getDimension()
print("Distribution ", distribution)
print("Parameters ", distribution.getParametersCollection())
print("Mean ", distribution.getMean())
cov = distribution.getCovariance()
cov_ref = ot.CovarianceMatrix(
    [[0.0833333, 0.0, 0.0833333], [0.0, 0.0833333, 0.0], [0.0833333, 0.0, 2.41667]]
)
ott.assert_almost_equal(cov, cov_ref)
# Is this distribution an elliptical distribution?
print("Elliptical distribution= ", distribution.isElliptical())

# Has this distribution an elliptical copula?
print("Elliptical copula= ", distribution.hasEllipticalCopula())

# Has this distribution an independent copula?
print("Independent copula= ", distribution.hasIndependentCopula())

# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)

# Test for sampling
size = 10
oneSample = distribution.getSample(size)
print("oneSample=", oneSample)

# Test for sampling
size = 10000
anotherSample = distribution.getSample(size)
print("anotherSample mean=", anotherSample.computeMean())
print("anotherSample covariance=", anotherSample.computeCovariance())

# Define a point
point = [0.5, 1.5, 1.0]

# Show PDF and CDF of point point
pointPDF = distribution.computePDF(point)
pointCDF = distribution.computeCDF(point)
print("Point point= ", point, " pdf=%.6f" % pointPDF, " cdf=%.6f" % pointCDF)

# Get 95% quantile
quantile = distribution.computeQuantile(0.95)
print("Quantile=", quantile)
print("CDF(quantile)= %.12g" % distribution.computeCDF(quantile))

x = 2.5
y = [0.5, 1.5]
print("conditional PDF=%.5e" % distribution.computeConditionalPDF(x, y))
condCDF = distribution.computeConditionalCDF(x, y)
print("conditional CDF=%.5e" % condCDF)
q = condCDF
print("conditional quantile=%.5e" % distribution.computeConditionalQuantile(q, y))
pt = [i + 0.5 for i in range(dim)]
print("sequential conditional PDF=", distribution.computeSequentialConditionalPDF(pt))
resCDF = distribution.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
    "sequential conditional quantile(",
    resCDF,
    ")=",
    distribution.computeSequentialConditionalQuantile(resCDF),
)

ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipMoments()  # slow
validation.skipCorrelation()  # slow
validation.skipGradient()  # slow
validation.run()