File: t_JointDistribution_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (331 lines) | stat: -rwxr-xr-x 11,279 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott
import openturns.experimental as otexp

ot.TESTPREAMBLE()

mean = [3.0, 2.0, 1.0]
sigma = [2.0, 3.0, 4.0]

refCovariances = list()
refCovariances.append(
    ot.CovarianceMatrix(3, [4.0, 0.0, 0.0, 0.0, 9.0, 0.0, 0.0, 0.0, 16.0])
)
refCovariances.append(
    ot.CovarianceMatrix(3, [4.0, 1.5, 0.0, 1.5, 9.0, 3.0, 0.0, 3.0, 16.0])
)
refCovariances.append(
    ot.CovarianceMatrix(3, [4.0, 1.125, 0.0, 1.125, 9.0, 2.25, 0.0, 2.25, 16.0])
)
refCovariances.append(
    ot.CovarianceMatrix(
        3,
        [
            4.0,
            2.0696999,
            -4.403889,
            2.0696999,
            9.0,
            4.1393998,
            -4.403889,
            4.1393998,
            16.0,
        ],
    )
)
refCovariances.append(
    ot.CovarianceMatrix(
        3, [0.39606657, 0.0, 0.0, 0.0, 0.891149785, 0.0, 0.0, 0.0, 1.584266284]
    )
)

refStandardDeviation = [
    [2, 3, 4],
    [2, 3, 4],
    [2, 3, 4],
    [1.49595080640498, 2.00948748222124, 2.99190161280996],
    [0.62933820074628, 0.94400730111948, 1.25867640149264],
]
refSkewness = [
    [0, 0, 0],
    [0, 0, 0],
    [0, 0, 0],
    [-0.213157049688829, 0.0, 0.213157049689032],
    [0.22711106425, 0.22711106425, 0.22711106425],
]
refKurtosis = [
    [3, 3, 3],
    [3, 3, 3],
    [3, 3, 3],
    [3.11664895604121, 3.03472746922749, 3.11664895604127],
    [2.439305739629, 2.439305739629, 2.439305739629],
]

# Create a collection of distribution attente TUI
aCollection = []
try:
    aCollection[10] = ot.Normal()
except Exception:
    pass

dim = len(mean)
# Create a collection of distribution
aCollection = list()
marginal = ot.Normal(mean[0], sigma[0])
marginal.setName("First")
marginal.setDescription(["One"])
aCollection.append(marginal)
marginal = ot.Normal(mean[1], sigma[1])
marginal.setName("Second")
marginal.setDescription(["Two"])
aCollection.append(marginal)
marginal = ot.Normal(mean[2], sigma[2])
marginal.setName("Third")
marginal.setDescription(["Three"])
aCollection.append(marginal)

# Create a copula
aCopula = ot.IndependentCopula(dim)
aCopula.setName("Independent copula")
cores = [aCopula]
# With a Normal copula
correlation = ot.CorrelationMatrix(dim)
for i in range(1, dim):
    correlation[i - 1, i] = 0.25
anotherCopula = ot.NormalCopula(correlation)
anotherCopula.setName("Normal copula")
cores.append(anotherCopula)
# With a copula which is not a copula by type
atoms = [aCopula, anotherCopula]
cores.append(ot.Mixture(atoms, [0.25, 0.75]))
# With a non-copula core
cores.append(otexp.UniformOrderStatistics(dim))
# With a core which support is strictly included in the unit cube
cores.append(ot.KernelMixture(ot.Beta(2.0, 3.0, 0.2, 0.8), [1.0] * dim, [[0.0] * dim]))
ot.ResourceMap.SetAsBool("JointDistribution-UseGenericCovarianceAlgorithm", True)
for nCore in range(len(cores)):
    print("\n\n")
    # Instantiate one distribution object
    distribution = ot.JointDistribution(aCollection, cores[nCore])
    distribution.setName("myDist")
    print("Distribution", repr(distribution))
    print("Distribution")
    print(distribution)
    print("Distribution (Markdown)")
    print(distribution.__repr_markdown__())
    print("Parameters", distribution.getParametersCollection())
    print("nCore=", nCore)

    # too slow for Mixture/KernelMixture
    if "Mixture" not in distribution.getCore().getImplementation().getName():
        print("entropy=%.5e" % distribution.computeEntropy())
        print(
            "entropy (MC)=%.5e"
            % -distribution.computeLogPDF(
                distribution.getSample(1000000)
            ).computeMean()[0]
        )
    print("Mean ", distribution.getMean())
    precision = ot.PlatformInfo.GetNumericalPrecision()
    print("Covariance ")
    if nCore != 3:
        covariance = distribution.getCovariance()
        covariance.checkSymmetry()
        ott.assert_almost_equal(covariance, refCovariances[nCore])
    # Is this distribution an elliptical distribution?
    print("Elliptical distribution= ", distribution.isElliptical())

    # Has this distribution an elliptical copula?
    print("Elliptical copula= ", distribution.hasEllipticalCopula())

    # Has this distribution an independent copula?
    print("Independent copula= ", distribution.hasIndependentCopula())

    # Test for realization of distribution
    oneRealization = distribution.getRealization()
    print("oneRealization=", oneRealization)
    # Test for sampling
    size = 10
    oneSample = distribution.getSample(size)
    print("oneSample=", oneSample)

    # Test for sampling
    size = 10000
    anotherSample = distribution.getSample(size)
    print("anotherSample mean=", anotherSample.computeMean())
    print("anotherSample covariance=", anotherSample.computeCovariance())

    # Define a point
    zero = [0.0] * dim

    # Show PDF and CDF of zero point
    zeroPDF = distribution.computePDF(zero)
    zeroCDF = distribution.computeCDF(zero)
    print("Zero point= ", zero, " pdf=%.5e" % zeroPDF, " cdf=%.5e" % zeroCDF)
    # Get 95% quantile
    quantile = distribution.computeQuantile(0.95)
    print("Quantile=", quantile)
    print("CDF(quantile)=%.5e" % distribution.computeCDF(quantile))

    # Extract the marginals
    for i in range(dim):
        margin = distribution.getMarginal(i)
        print("margin=", margin)
        print("margin PDF=%.5e" % margin.computePDF([0.0]))
        print("margin CDF=%.5e" % margin.computeCDF([0.0]))
        print("margin quantile=", margin.computeQuantile(0.95))
        print("margin realization=", margin.getRealization())

    # Extract a 2-D marginal
    indices = [1, 0]
    print("indices=", indices)
    margins = distribution.getMarginal(indices)
    print("margins=", margins)
    print("margins PDF=%.5e" % margins.computePDF([0.0] * 2))
    print("margins CDF=%.5e" % margins.computeCDF([0.0] * 2))
    quantile = margins.computeQuantile(0.5)
    print("margins quantile=", quantile)
    print("margins CDF(quantile)=%.5e" % margins.computeCDF(quantile))
    print("margins realization=", margins.getRealization())
    x = 0.6
    y = [0.2] * (dim - 1)
    print("conditional PDF=%.5e" % distribution.computeConditionalPDF(x, y))
    print("conditional CDF=%.5e" % distribution.computeConditionalCDF(x, y))
    print("conditional quantile=%.5e" % distribution.computeConditionalQuantile(x, y))
    pt = [i + 1.5 for i in range(dim)]
    print(
        "sequential conditional PDF=", distribution.computeSequentialConditionalPDF(pt)
    )
    resCDF = distribution.computeSequentialConditionalCDF(pt)
    print("sequential conditional CDF(", pt, ")=", resCDF)
    print(
        "sequential conditional quantile(",
        resCDF,
        ")=",
        distribution.computeSequentialConditionalQuantile(resCDF),
    )

    # Confidence regions
    if distribution.getDimension() <= 2:
        (
            levelSet,
            threshold,
        ) = distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
        print("Minimum volume interval=", levelSet)
        print("threshold=%.5e" % threshold)
        levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
        print("Minimum volume level set=", levelSet)
        print("beta=%.5e" % beta)
        (
            interval,
            beta,
        ) = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
        print("Bilateral confidence interval=", interval)
        print("beta=%.5e" % beta)
        (
            interval,
            beta,
        ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
            0.95, False
        )
        print("Unilateral confidence interval (lower tail)=", interval)
        print("beta=%.5e" % beta)
        (
            interval,
            beta,
        ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
            0.95, True
        )
        print("Unilateral confidence interval (upper tail)=", interval)
        print("beta=%.5e" % beta)
    # Moments other than mean and covariance
    standardDeviation = distribution.getStandardDeviation()
    ott.assert_almost_equal(standardDeviation, refStandardDeviation[nCore])
    skewness = distribution.getSkewness()
    ott.assert_almost_equal(skewness, refSkewness[nCore])
    kurtosis = distribution.getKurtosis()
    ott.assert_almost_equal(kurtosis, refKurtosis[nCore])
    anotherSample = distribution.getSample(size)
    print("anotherSample mean=", anotherSample.computeMean())
    print("anotherSample covariance=", anotherSample.computeCovariance())

# Create and print a complex distribution
aCollection2 = list()
marginalN = ot.Normal(0.0, 1.0)
marginalN.setName("First")
marginalN.setDescription(["One"])
aCollection2.append(marginalN)
marginalU = ot.Uniform(12345.6, 123456.7)
marginalU.setName("Second")
marginalU.setDescription(["Two"])
aCollection2.append(marginalU)
marginalTN = ot.TruncatedDistribution(ot.Normal(2.0, 1.5), 1.0, 4.0)
marginalTN.setName("Third")
marginalTN.setDescription(["Three"])
aCollection2.append(marginalTN)
distribution2 = ot.JointDistribution(aCollection2)
distribution2.setName("myDist2")
print("Distribution ")
print(distribution2)
print("Distribution (Markdown)")
print(distribution2.__repr_markdown__())

# test transfo
sample = distribution.getSample(10)
print(sample)
sample_iso = distribution.getIsoProbabilisticTransformation()(sample)
print(sample_iso)
sample_inv = distribution.getInverseIsoProbabilisticTransformation()(sample_iso)
print(sample_inv)
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % distribution.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % distribution.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % distribution.computeConditionalQuantile(x, y))
pt = [i + 1.5 for i in range(dim)]
print("sequential conditional PDF=", distribution.computeSequentialConditionalPDF(pt))
resCDF = distribution.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
    "sequential conditional quantile(",
    resCDF,
    ")=",
    distribution.computeSequentialConditionalQuantile(resCDF),
)

# comparison
d = ot.JointDistribution([ot.Uniform()] * 2, ot.ClaytonCopula(2.5))
d1 = ot.MaximumDistribution(d)
d2 = ot.MaximumDistribution(d)
assert d1.getDistribution() == d2.getDistribution(), "comp1"
assert d1 == d2, "comp2"

# check for lost description
dist_a = ot.Normal()
dist_a.setDescription(["a"])
dist_b = ot.Normal()
dist_b.setDescription(["b"])
dist_list = [dist_a, dist_b] + [ot.Normal()] * 3
composed = ot.JointDistribution(dist_list)
assert composed.getDescription() == ["a", "b", "X0", "X1", "X2"], "wrong description"

# Create and print a composed distribution with different
# complexities and print them
aCollection = [
    ot.Uniform(),
    ot.TruncatedDistribution(ot.Normal(2.0, 1.5), 1.0, 4.0),
    ot.Normal(),
]
distribution = ot.JointDistribution(aCollection)
print("Distribution = ")
print(distribution)
print("Distribution (Markdown) = ")
print(distribution.__repr_markdown__())
print("Distribution (HTML) = ")
print(distribution._repr_html_())

ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.run()