File: t_KarhunenLoeveSVDAlgorithm_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (119 lines) | stat: -rwxr-xr-x 4,436 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#! /usr/bin/env python

import openturns as ot
import math as m

ot.TESTPREAMBLE()


for UseRandomSVD, RandomSVDVariant in [
    (False, ""),
    (True, "Halko2010"),
    (True, "Halko2011"),
]:
    ot.ResourceMap.SetAsBool("KarhunenLoeveSVDAlgorithm-UseRandomSVD", UseRandomSVD)
    ot.ResourceMap.SetAsString(
        "KarhunenLoeveSVDAlgorithm-RandomSVDVariant", RandomSVDVariant
    )

    mesh = ot.IntervalMesher([9]).build(ot.Interval(-1.0, 1.0))
    # 1D mesh, 1D covariance, uniform weight, automatic centering, more samples
    # than vertices
    cov1D = ot.AbsoluteExponential([1.0])
    sample = ot.GaussianProcess(cov1D, mesh).getSample(16)
    algo = ot.KarhunenLoeveSVDAlgorithm(sample, 0.0)
    algo.run()
    result = algo.getResult()
    lambd = result.getEigenvalues()
    KLModes = result.getModesAsProcessSample()
    print("KL modes=", KLModes)
    print("KL eigenvalues=", lambd)
    coefficients = result.project(sample)
    print("KL coefficients=", coefficients)
    KLFunctions = result.getModes()
    print("KL functions=", KLFunctions)
    print("KL lift=", result.lift(coefficients[0]))
    print("KL lift as field=", result.liftAsField(coefficients[0]))

    # 1D mesh, 1D covariance, uniform weight, automatic centering
    sample = ot.GaussianProcess(cov1D, mesh).getSample(6)
    algo = ot.KarhunenLoeveSVDAlgorithm(sample, 0.0)
    algo.run()
    result = algo.getResult()
    lambd = result.getEigenvalues()
    KLModes = result.getModesAsProcessSample()
    print("KL modes=", KLModes)
    print("KL eigenvalues=", lambd)
    coefficients = result.project(sample)
    print("KL coefficients=", coefficients)
    KLFunctions = result.getModes()
    print("KL functions=", KLFunctions)
    print("KL lift=", result.lift(coefficients[0]))
    print("KL lift as field=", result.liftAsField(coefficients[0]))

    # 1D mesh, 1D covariance, uniform weight, declared centered
    algo = ot.KarhunenLoeveSVDAlgorithm(sample, 0.0, True)
    algo.run()
    result = algo.getResult()
    lambd = result.getEigenvalues()
    KLModes = result.getModesAsProcessSample()
    print("KL modes=", KLModes)
    print("KL eigenvalues=", lambd)
    coefficients = result.project(sample)
    print("KL coefficients=", coefficients)
    KLFunctions = result.getModes()
    print("KL functions=", KLFunctions)
    print("KL lift=", result.lift(coefficients[0]))
    print("KL lift as field=", result.liftAsField(coefficients[0]))

    # 1D mesh, 1D covariance, nonuniform weight, automatic centering
    weights = mesh.computeWeights()
    algo = ot.KarhunenLoeveSVDAlgorithm(sample, weights, 0.0, True)
    algo.run()
    result = algo.getResult()
    lambd = result.getEigenvalues()
    KLModes = result.getModesAsProcessSample()
    print("KL modes=", KLModes)
    print("KL eigenvalues=", lambd)
    coefficients = result.project(sample)
    print("KL coefficients=", coefficients)
    KLFunctions = result.getModes()
    print("KL functions=", KLFunctions)
    print("KL lift=", result.lift(coefficients[0]))
    print("KL lift as field=", result.liftAsField(coefficients[0]))

    # 1D mesh, 1D covariance, uniform weight, automatic centering
    R = ot.CorrelationMatrix(2, [1.0, 0.5, 0.5, 1.0])
    scale = [1.0]
    amplitude = [1.0, 2.0]
    cov2D = ot.ExponentialModel(scale, amplitude, R)
    sample = ot.GaussianProcess(cov2D, mesh).getSample(6)
    algo = ot.KarhunenLoeveSVDAlgorithm(sample, 0.0)
    algo.run()
    result = algo.getResult()
    lambd = result.getEigenvalues()
    KLModes = result.getModesAsProcessSample()
    print("KL modes=", KLModes)
    print("KL eigenvalues=", lambd)
    coefficients = result.project(sample)
    print("KL coefficients=", coefficients)
    KLFunctions = result.getModes()
    print("KL functions=", KLFunctions)
    print("KL lift=", result.lift(coefficients[0]))
    print("KL lift as field=", result.liftAsField(coefficients[0]))

    # truncation test

    def func(tau, theta):
        return m.sin(2 * m.pi * (tau - theta)) + 1.0

    mesh_size = 10
    mesh = ot.RegularGrid(0.0, 1.0 / (mesh_size - 1.0), mesh_size)
    samples = ot.ProcessSample(mesh, 100, 1)
    for i in range(samples.getSize()):
        samples[i] = [[func(tau[0], i)] for tau in mesh.getVertices()]
    algo = ot.KarhunenLoeveSVDAlgorithm(samples, 0.0, True)
    algo.run()
    result = algo.getResult()
    evs = result.getEigenvalues()
    assert len(evs) == 10, "expected 10 values"