File: t_KernelMixture_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (41 lines) | stat: -rw-r--r-- 3,059 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
Distribution  class=KernelMixture name=KernelMixture kernel=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1] bandwidth=class=Point name=Unnamed dimension=3 values=[2,3,1] sample=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=3 data=[[0.5,-0.5,1],[1.5,0.5,2],[2.5,1.5,3]]
Distribution  KernelMixture(kernel = Normal(mu = 0, sigma = 1), bandwidth = [2,3,1], sample = 
0 : [  0.5 -0.5  1   ]
1 : [  1.5  0.5  2   ]
2 : [  2.5  1.5  3   ]
Elliptical =  False
Continuous =  True
oneRealization= class=Point name=Unnamed dimension=3 values=[2.07328,-2.47593,2.92288]
oneSample first= class=Point name=Unnamed dimension=3 values=[-1.86277,2.55013,2.64499]  last= class=Point name=Unnamed dimension=3 values=[2.81013,-1.29834,1.89856]
mean= class=Point name=Unnamed dimension=3 values=[1.63854,0.0623536,2.01459]
covariance= class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[4.5743,-0.738335,-0.178015,-0.738335,6.42657,0.306325,-0.178015,0.306325,1.37246]
Point=  [1.0, 1.0, 1.0]
ddf     = class=Point name=Unnamed dimension=3 values=[1.17543e-05,-0.000596732,0.00275582]
ddf (ref)= class=Point name=Unnamed dimension=3 values=[1.17543e-05,-0.000596732,0.00275582]
log pdf=-5.218101
pdf     =0.005418
pdf (ref)=0.005418
cdf=0.081759
ccdf=0.918241
cdf (ref)=0.081759
quantile= class=Point name=Unnamed dimension=3 values=[6.05991,7.07458,4.66827]
quantile (ref)= class=Point name=Unnamed dimension=3 values=[6.05991,7.07458,4.66827]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=3 values=[-3.05991,-6.07458,-0.668274]
Survival(inverseSurvival)=0.950000
cond. cdf=0.615836
cond. cdf (vect)= [0.615836,0.657634,0.707868]
cond. pdf=0.123311
cond. pdf (vect)= [0.123311,0.118288,0.110573]
cond. quantile=-3.77006
cond. quantile (vect)= [-3.77006,-1.28752,2.12927]
cond. cdf(cond. quantile)= [0.1,0.3,0.7]
sequential conditional PDF= [0.179079,0.126183,0.239751]
sequential conditional CDF( [1.5,2.5,3.5] )= [0.5,0.740131,0.855175]
sequential conditional quantile( [0.5,0.740131,0.855175] )= [1.5,2.5,3.5]
mean= class=Point name=Unnamed dimension=3 values=[1.5,0.5,2]
mean (ref)= class=Point name=Unnamed dimension=3 values=[1.5,0.5,2]
covariance= class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[4.66667,0.666667,0.666667,0.666667,9.66667,0.666667,0.666667,0.666667,1.66667]
covariance (ref)= class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[4.66667,0.666667,0.666667,0.666667,9.66667,0.666667,0.666667,0.666667,1.66667]
parameters= [0.5,-0.5,1,1.5,0.5,2,2.5,1.5,3,2,3,1]#12
parametersDesc= [x_0^0,x_0^1,x_0^2,x_1^0,x_1^1,x_1^2,x_2^0,x_2^1,x_2^2,h_0,h_1,h_2]#12