File: t_KernelMixture_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (163 lines) | stat: -rwxr-xr-x 5,439 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

# Instantiate one distribution object
dimension = 3
meanPoint = ot.Point([0.5, -0.5, 1])
sigma = [2, 3, 1]

sample = ot.Sample(0, dimension)
# Create a collection of distribution
aCollection = ot.DistributionCollection()

aCollection.add(ot.Normal(meanPoint, sigma, ot.IdentityMatrix(dimension)))
sample.add(meanPoint)
meanPoint += [1.0] * dimension
aCollection.add(ot.Normal(meanPoint, sigma, ot.IdentityMatrix(dimension)))
sample.add(meanPoint)
meanPoint += [1.0] * dimension
aCollection.add(ot.Normal(meanPoint, sigma, ot.IdentityMatrix(dimension)))
sample.add(meanPoint)

# Instantiate one distribution object
distribution = ot.KernelMixture(ot.Normal(), sigma, sample)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
distributionRef = ot.Mixture(aCollection)

# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())

# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())

# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))

# Test for sampling
size = 100
oneSample = distribution.getSample(size)
print("oneSample first=", repr(oneSample[0]), " last=", repr(oneSample[size - 1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))

# Define a point
point = [1.0] * distribution.getDimension()
print("Point= ", repr(point))

# Show PDF and CDF of point
eps = 1e-5

# derivative of PDF with regards its arguments
DDF = distribution.computeDDF(point)
print("ddf     =", repr(DDF))
print("ddf (ref)=", repr(distributionRef.computeDDF(point)))

# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf     =%.6f" % PDF)
print("pdf (ref)=%.6f" % distributionRef.computePDF(point))

# derivative of the PDF with regards the parameters of the distribution
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
print("cdf (ref)=%.6f" % distributionRef.computeCDF(point))

# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("quantile (ref)=", repr(distributionRef.computeQuantile(0.95)))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
    "Survival(inverseSurvival)=%.6f"
    % distribution.computeSurvivalFunction(inverseSurvival)
)
# Takes too much time
# print("entropy=%.6f" % distribution.computeEntropy())
# Confidence regions
if distribution.getDimension() <= 2:
    threshold = ot.Point()
    print(
        "Minimum volume interval=",
        distribution.computeMinimumVolumeInterval(0.95, threshold),
    )
    print("threshold=", threshold)
    beta = ot.Point()
    levelSet = distribution.computeMinimumVolumeLevelSet(0.95, beta)
    print("Minimum volume level set=", levelSet)
    print("beta=", beta)
    print(
        "Bilateral confidence interval=",
        distribution.computeBilateralConfidenceInterval(0.95, beta),
    )
    print("beta=", beta)
    print(
        "Unilateral confidence interval (lower tail)=",
        distribution.computeUnilateralConfidenceInterval(0.95, False, beta),
    )
    print("beta=", beta)
    print(
        "Unilateral confidence interval (upper tail)=",
        distribution.computeUnilateralConfidenceInterval(0.95, True, beta),
    )
    print("beta=", beta)

x = [1.1, 1.6, 2.2]
q = [0.1, 0.3, 0.7]
y = [[-0.5], [0.5], [1.5]]

condCDF = distribution.computeConditionalCDF(x[0], y[0])
print("cond. cdf=%.6f" % condCDF)
condCDFs = distribution.computeConditionalCDF(x, y)
print("cond. cdf (vect)=", condCDFs)
condPDF = distribution.computeConditionalPDF(x[0], y[0])
print("cond. pdf=%.6f" % condPDF)
condPDFs = distribution.computeConditionalPDF(x, y)
print("cond. pdf (vect)=", condPDFs)
condQuantile = distribution.computeConditionalQuantile(q[0], y[0])
print("cond. quantile=%.5f" % condQuantile)
condQuantiles = distribution.computeConditionalQuantile(q, y)
print("cond. quantile (vect)=", condQuantiles)
print(
    "cond. cdf(cond. quantile)=", distribution.computeConditionalCDF(condQuantiles, y)
)
pt = ot.Point([i + 1.5 for i in range(dimension)])
print(
    "sequential conditional PDF=", distribution.computeSequentialConditionalPDF(point)
)
resCDF = distribution.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
    "sequential conditional quantile(",
    resCDF,
    ")=",
    distribution.computeSequentialConditionalQuantile(resCDF),
)

mean = distribution.getMean()
print("mean=", repr(mean))
print("mean (ref)=", repr(distributionRef.getMean()))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
print("covariance (ref)=", repr(distributionRef.getCovariance()))
parameters = distribution.getParameter()
print("parameters=", parameters)
print("parametersDesc=", distribution.getParameterDescription())
distribution.setParameter(parameters)

ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipCorrelation()  # slow
validation.run()