1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Instantiate one distribution object
dimension = 3
meanPoint = ot.Point([0.5, -0.5, 1])
sigma = [2, 3, 1]
sample = ot.Sample(0, dimension)
# Create a collection of distribution
aCollection = ot.DistributionCollection()
aCollection.add(ot.Normal(meanPoint, sigma, ot.IdentityMatrix(dimension)))
sample.add(meanPoint)
meanPoint += [1.0] * dimension
aCollection.add(ot.Normal(meanPoint, sigma, ot.IdentityMatrix(dimension)))
sample.add(meanPoint)
meanPoint += [1.0] * dimension
aCollection.add(ot.Normal(meanPoint, sigma, ot.IdentityMatrix(dimension)))
sample.add(meanPoint)
# Instantiate one distribution object
distribution = ot.KernelMixture(ot.Normal(), sigma, sample)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
distributionRef = ot.Mixture(aCollection)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
# Test for sampling
size = 100
oneSample = distribution.getSample(size)
print("oneSample first=", repr(oneSample[0]), " last=", repr(oneSample[size - 1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))
# Define a point
point = [1.0] * distribution.getDimension()
print("Point= ", repr(point))
# Show PDF and CDF of point
eps = 1e-5
# derivative of PDF with regards its arguments
DDF = distribution.computeDDF(point)
print("ddf =", repr(DDF))
print("ddf (ref)=", repr(distributionRef.computeDDF(point)))
# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf =%.6f" % PDF)
print("pdf (ref)=%.6f" % distributionRef.computePDF(point))
# derivative of the PDF with regards the parameters of the distribution
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
print("cdf (ref)=%.6f" % distributionRef.computeCDF(point))
# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("quantile (ref)=", repr(distributionRef.computeQuantile(0.95)))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f"
% distribution.computeSurvivalFunction(inverseSurvival)
)
# Takes too much time
# print("entropy=%.6f" % distribution.computeEntropy())
# Confidence regions
if distribution.getDimension() <= 2:
threshold = ot.Point()
print(
"Minimum volume interval=",
distribution.computeMinimumVolumeInterval(0.95, threshold),
)
print("threshold=", threshold)
beta = ot.Point()
levelSet = distribution.computeMinimumVolumeLevelSet(0.95, beta)
print("Minimum volume level set=", levelSet)
print("beta=", beta)
print(
"Bilateral confidence interval=",
distribution.computeBilateralConfidenceInterval(0.95, beta),
)
print("beta=", beta)
print(
"Unilateral confidence interval (lower tail)=",
distribution.computeUnilateralConfidenceInterval(0.95, False, beta),
)
print("beta=", beta)
print(
"Unilateral confidence interval (upper tail)=",
distribution.computeUnilateralConfidenceInterval(0.95, True, beta),
)
print("beta=", beta)
x = [1.1, 1.6, 2.2]
q = [0.1, 0.3, 0.7]
y = [[-0.5], [0.5], [1.5]]
condCDF = distribution.computeConditionalCDF(x[0], y[0])
print("cond. cdf=%.6f" % condCDF)
condCDFs = distribution.computeConditionalCDF(x, y)
print("cond. cdf (vect)=", condCDFs)
condPDF = distribution.computeConditionalPDF(x[0], y[0])
print("cond. pdf=%.6f" % condPDF)
condPDFs = distribution.computeConditionalPDF(x, y)
print("cond. pdf (vect)=", condPDFs)
condQuantile = distribution.computeConditionalQuantile(q[0], y[0])
print("cond. quantile=%.5f" % condQuantile)
condQuantiles = distribution.computeConditionalQuantile(q, y)
print("cond. quantile (vect)=", condQuantiles)
print(
"cond. cdf(cond. quantile)=", distribution.computeConditionalCDF(condQuantiles, y)
)
pt = ot.Point([i + 1.5 for i in range(dimension)])
print(
"sequential conditional PDF=", distribution.computeSequentialConditionalPDF(point)
)
resCDF = distribution.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
distribution.computeSequentialConditionalQuantile(resCDF),
)
mean = distribution.getMean()
print("mean=", repr(mean))
print("mean (ref)=", repr(distributionRef.getMean()))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
print("covariance (ref)=", repr(distributionRef.getCovariance()))
parameters = distribution.getParameter()
print("parameters=", parameters)
print("parametersDesc=", distribution.getParameterDescription())
distribution.setParameter(parameters)
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipCorrelation() # slow
validation.run()
|