1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Instantiate one distribution object
dim = 2
meanPoint = [0.5, -0.5]
sigma = [2.0, 3.0]
R = ot.CorrelationMatrix(dim)
for i in range(1, dim):
R[i, i - 1] = 0.5
distribution = ot.Normal(meanPoint, sigma, R)
discretization = 100
kernel = ot.KernelSmoothing()
sample = distribution.getSample(discretization)
kernels = ot.DistributionCollection(0)
kernels.add(ot.Normal())
kernels.add(ot.Epanechnikov())
kernels.add(ot.Uniform())
kernels.add(ot.Triangular())
kernels.add(ot.Logistic())
kernels.add(ot.Beta(2.0, 2.0, -1.0, 1.0))
kernels.add(ot.Beta(3.0, 3.0, -1.0, 1.0))
meanExact = distribution.getMean()
covarianceExact = distribution.getCovariance()
for kernel in kernels:
print("kernel=", kernel.getName())
smoother = ot.KernelSmoothing(kernel)
smoothed = smoother.build(sample)
bw = smoother.getBandwidth()
print("kernel bandwidth=[ %.6g" % bw[0], ", %.6g" % bw[1], "]")
meanSmoothed = smoothed.getMean()
print(
"mean(smoothed)=[ %.6g" % meanSmoothed[0],
", %.6g" % meanSmoothed[1],
"] mean(exact)=[",
meanExact[0],
", ",
meanExact[1],
"]",
)
covarianceSmoothed = smoothed.getCovariance()
print(
"covariance=",
repr(covarianceSmoothed),
" covariance(exact)=",
repr(covarianceExact),
)
# Define a point
point = ot.Point(smoothed.getDimension(), 0.0)
# Show PDF and CDF of point point
pointPDF = smoothed.computePDF(point)
pointCDF = smoothed.computeCDF(point)
print("Point= ", repr(point))
print(" pdf(smoothed)=%.6g" % pointPDF)
print(" pdf(exact)=%.6g" % distribution.computePDF(point))
print(" cdf(smoothed)=%.6g" % pointCDF)
print(" cdf(exact)=%.6g" % distribution.computeCDF(point))
# as mixture
mixture = smoother.buildAsMixture(
sample, smoother.computeSilvermanBandwidth(sample)
)
pointPDF = mixture.computePDF(point)
pointCDF = mixture.computeCDF(point)
print(" pdf(smoothed)=%.6g" % pointPDF)
print(" pdf(exact)=%.6g" % distribution.computePDF(point))
print(" cdf(smoothed)=%.6g" % pointCDF)
print(" cdf(exact)=%.6g" % distribution.computeCDF(point))
# Test for boundary correction
distributionCollection = ot.DistributionCollection(2)
distributionCollection[0] = ot.Normal(0.0, 1.0)
distributionCollection[1] = ot.Beta(0.7, 0.9, -1.0, 2.0)
sampleCollection = [
distributionCollection[0].getSample(discretization),
distributionCollection[1].getSample(discretization),
]
for i in range(kernels.getSize()):
kernel = kernels[i]
print("kernel=", kernel.getName())
smoother = ot.KernelSmoothing(kernel)
for j in range(2):
for corr in [False, True]:
smoother.setBoundaryCorrection(corr)
smoothed = smoother.build(sampleCollection[j])
print(
"Bounded underlying distribution? ",
j == 1,
" bounded reconstruction? ",
corr,
)
# Define a point
point = ot.Point(smoothed.getDimension(), -0.9)
# Show PDF and CDF of point point
pointPDF = smoothed.computePDF(point)
pointCDF = smoothed.computeCDF(point)
print(
" pdf(smoothed)= %.6g" % pointPDF,
" pdf(exact)= %.6g" % distributionCollection[j].computePDF(point),
)
print(
" cdf(smoothed)= %.6g" % pointCDF,
" cdf(exact)= %.6g" % distributionCollection[j].computeCDF(point),
)
sample = ot.Normal().getSample(5000)
ks1 = ot.KernelSmoothing(ot.Normal(), True, 64).build(sample)
ks2 = ot.KernelSmoothing(ot.Normal(), True, 1024).build(sample)
ks3 = ot.KernelSmoothing(ot.Normal(), False).build(sample)
point = 0.3
print("with low bin count, pdf=%.6g" % ks1.computePDF(point))
print("with high bin count, pdf=%.6g" % ks2.computePDF(point))
print("without binning, pdf=%.6g" % ks3.computePDF(point))
# Test with varying boundary corrections
coll = [ot.Uniform(-1.0, 1.0), ot.Uniform(0.0, 2.0)]
left = [-0.9, 0.1]
right = [0.9, 1.9]
for nDist in range(len(coll)):
baseDist = coll[nDist]
sample = baseDist.getSample(500)
algo1 = ot.KernelSmoothing(ot.Normal(), False)
algo1.setBoundingOption(ot.KernelSmoothing.NONE)
ks1 = algo1.build(sample)
print(
"with no boundary correction, pdf(left)=%.6g" % ks1.computePDF(left[nDist]),
", pdf(right)=%.6g" % ks1.computePDF(right[nDist]),
)
algo2 = ot.KernelSmoothing(ot.Normal(), False)
algo2.setBoundingOption(ot.KernelSmoothing.LOWER)
algo2.setAutomaticLowerBound(True)
ks2 = algo2.build(sample)
print(
"with automatic lower boundary correction, pdf(left)=%.6g"
% ks2.computePDF(left[nDist]),
", pdf(right)=%.6g" % ks2.computePDF(right[nDist]),
)
algo3 = ot.KernelSmoothing(ot.Normal(), False)
algo3.setBoundingOption(ot.KernelSmoothing.LOWER)
algo3.setLowerBound(baseDist.getRange().getLowerBound()[0])
algo3.setAutomaticLowerBound(False)
ks3 = algo3.build(sample)
print(
"with user defined lower boundary correction, pdf(left)=%.6g"
% ks3.computePDF(left[nDist]),
", pdf(right)=%.6g" % ks3.computePDF(right[nDist]),
)
algo4 = ot.KernelSmoothing(ot.Normal(), False)
algo4.setBoundingOption(ot.KernelSmoothing.UPPER)
algo4.setAutomaticUpperBound(True)
ks4 = algo4.build(sample)
print(
"with automatic upper boundary correction, pdf(left)=%.6g"
% ks4.computePDF(left[nDist]),
", pdf(right)=%.6g" % ks4.computePDF(right[nDist]),
)
algo5 = ot.KernelSmoothing(ot.Normal(), False)
algo5.setBoundingOption(ot.KernelSmoothing.UPPER)
algo5.setUpperBound(baseDist.getRange().getUpperBound()[0])
algo5.setAutomaticLowerBound(False)
ks5 = algo5.build(sample)
print(
"with user defined upper boundary correction, pdf(left)=%.6g"
% ks5.computePDF(left[nDist]),
", pdf(right)=%.6g" % ks5.computePDF(right[nDist]),
)
algo6 = ot.KernelSmoothing(ot.Normal(), False)
algo6.setBoundingOption(ot.KernelSmoothing.BOTH)
ks6 = algo6.build(sample)
print(
"with automatic boundaries correction, pdf(left)=%.6g"
% ks6.computePDF(left[nDist]),
", pdf(right)=%.6g" % ks6.computePDF(right[nDist]),
)
algo7 = ot.KernelSmoothing(ot.Normal(), False)
algo7.setBoundingOption(ot.KernelSmoothing.BOTH)
algo7.setLowerBound(baseDist.getRange().getLowerBound()[0])
ks7 = algo7.build(sample)
print(
"with user defined lower/automatic upper boundaries correction, pdf(left)=%.6g"
% ks7.computePDF(left[nDist]),
", pdf(right)=%.6g" % ks7.computePDF(right[nDist]),
)
algo8 = ot.KernelSmoothing(ot.Normal(), False)
algo8.setBoundingOption(ot.KernelSmoothing.BOTH)
algo8.setUpperBound(baseDist.getRange().getUpperBound()[0])
ks8 = algo8.build(sample)
print(
"with automatic lower/user defined upper boundaries correction, pdf(left)=%.6g"
% ks8.computePDF(left[nDist]),
", pdf(right)=%.6g" % ks8.computePDF(right[nDist]),
)
algo9 = ot.KernelSmoothing(ot.Normal(), False)
algo9.setBoundingOption(ot.KernelSmoothing.BOTH)
algo9.setLowerBound(baseDist.getRange().getLowerBound()[0])
algo9.setUpperBound(baseDist.getRange().getUpperBound()[0])
ks9 = algo9.build(sample)
print(
"with user defined boundaries correction, pdf(left)=%.6g"
% ks9.computePDF(left[nDist]),
", pdf(right)=%.6g" % ks9.computePDF(right[nDist]),
)
# full degenerate case
sample = ot.JointDistribution([ot.Dirac(-7.0), ot.Dirac(0.0), ot.Dirac(8.0)]).getSample(
50
)
smoothed = ot.KernelSmoothing().build(sample)
print(smoothed.getSample(3))
# n-d degenerate case
sample = ot.JointDistribution(
[ot.Dirac(-7.0), ot.Arcsine(2.0, 3.0), ot.Dirac(8.0)]
).getSample(50)
sample.setDescription(["d7", "a23", "d8"])
smoothed = ot.KernelSmoothing().build(sample)
print(smoothed.getSample(3))
# Test with reduced Cutoff - generates non positive phiGammaH
distribution = ot.Normal()
kernel = ot.Normal()
factory = ot.KernelSmoothing(kernel)
ot.ResourceMap.SetAsScalar("KernelSmoothing-CutOffPlugin", 3.0)
ot.RandomGenerator.SetSeed(8457)
sample = distribution.getSample(30)
h = factory.computePluginBandwidth(sample)[0]
print("with reduced cutoff. h=%.6g" % (h))
# test of logTransform
for i, distribution in enumerate(
[
ot.LogNormal(0.0, 2.5),
ot.Beta(20000.5, 2.5, 0.0, 1.0),
ot.Exponential(),
ot.WeibullMax(1.0, 0.9, 0.0),
ot.Mixture(
[ot.LogNormal(-1.0, 1.0, -1.0), ot.LogNormal(1.0, 1.0, 1.0)], [0.2, 0.8]
),
]
):
sample = distribution.getSample(10000)
kernel = ot.KernelSmoothing()
kernel.setUseLogTransform(True)
fitted = kernel.build(sample)
quantile = distribution.computeQuantile(0.25)
ott.assert_almost_equal(
distribution.computePDF(quantile), fitted.computePDF(quantile), 0.05
)
quantile = distribution.computeQuantile(0.5)
ott.assert_almost_equal(
distribution.computePDF(quantile), fitted.computePDF(quantile), 0.05
)
quantile = distribution.computeQuantile(0.75)
ott.assert_almost_equal(
distribution.computePDF(quantile), fitted.computePDF(quantile), 0.05
)
|