File: t_KrigingAlgorithm_funcmodel.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (61 lines) | stat: -rwxr-xr-x 2,004 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

inputDimension = 2

levels = [8, 6]
box = ot.Box(levels)
inputSample = box.generate()
inputSample *= 10.0

model = ot.SymbolicFunction(["x", "y"], ["cos(0.5*x) + sin(y)"])
outputSample = model(inputSample)

# Validation
sampleSize = 10
inputValidSample = ot.JointDistribution(2 * [ot.Uniform(1.0, 9.0)]).getSample(
    sampleSize
)
outputValidSample = model(inputValidSample)

# Reimplement the squared exponential covariance model
rho = ot.SymbolicFunction(["x", "y"], ["exp(-0.5* (x * x + y * y))"])
covarianceModel = ot.StationaryFunctionalCovarianceModel([6.0, 2.0], [1.5], rho)

# Basis definition
basis = ot.LinearBasisFactory(inputDimension).build()

# Kriging algorithm
algo = ot.KrigingAlgorithm(inputSample, outputSample, covarianceModel, basis)
start = [50.0] * inputDimension
loglikelihood = algo.getReducedLogLikelihoodFunction()(start)
algo.setOptimizeParameters(False)
algo.run()
result = algo.getResult()
metaModel = result.getMetaModel()
variance = result.getConditionalMarginalVariance(inputSample)
ott.assert_almost_equal(variance, ot.Sample(inputSample.getSize(), 1), 1e-14, 1e-14)


# Consistency check: does the reimplementation fit the SquaredExponential class?
squaredExponential = ot.SquaredExponential(inputDimension)
squaredExponential.setParameter([6.0, 2.0, 1.5])
algoSE = ot.KrigingAlgorithm(inputSample, outputSample, squaredExponential, basis)
loglikelihoodSE = algoSE.getReducedLogLikelihoodFunction()(start)
ott.assert_almost_equal(loglikelihood, loglikelihoodSE, 1e-8, 1e-8)

# High level consistency check: does the prediction fit too?
algoSE.setOptimizeParameters(False)
algoSE.run()
resultSE = algoSE.getResult()
metaModelSE = resultSE.getMetaModel()
ott.assert_almost_equal(
    metaModel(inputValidSample), metaModelSE(inputValidSample), 1e-8, 1e-8
)

# Validate the metamodel
ott.assert_almost_equal(outputValidSample, metaModel(inputValidSample), 5.0e-3, 5.0e-3)