File: t_KrigingAlgorithm_isotropic_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (48 lines) | stat: -rwxr-xr-x 1,334 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()


def fitKriging(covarianceModel):
    """
    Fit the parameters of a kriging metamodel.
    """
    coordinates = ot.Sample(
        [
            [1.0, 1.0],
            [5.0, 1.0],
            [9.0, 1.0],
            [1.0, 3.5],
            [5.0, 3.5],
            [9.0, 3.5],
            [1.0, 6.0],
            [5.0, 6.0],
            [9.0, 6.0],
        ]
    )
    observations = ot.Sample(
        [[25.0], [25.0], [10.0], [20.0], [25.0], [20.0], [15.0], [25.0], [25.0]]
    )
    basis = ot.ConstantBasisFactory(2).build()
    algo = ot.KrigingAlgorithm(coordinates, observations, covarianceModel, basis)
    algo.run()
    krigingResult = algo.getResult()
    return krigingResult


# Isotropic covariance model
myIsotropicKernel = ot.IsotropicCovarianceModel(ot.SquaredExponential(), 2)
krigingFittedCovarianceModel = fitKriging(myIsotropicKernel).getCovarianceModel()
ott.assert_almost_equal(krigingFittedCovarianceModel.getScale()[0], 2.86427, 0.0, 1e-4)
ott.assert_almost_equal(
    krigingFittedCovarianceModel.getAmplitude()[0], 6.65231, 0.0, 1e-4
)

try:
    ot.IsotropicCovarianceModel(ot.SquaredExponential(), 0)
    raise ValueError("Invalid IsotropicCovarianceModel should have thrown")
except TypeError:
    pass