1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
def fitKriging(covarianceModel):
"""
Fit the parameters of a kriging metamodel.
"""
coordinates = ot.Sample(
[
[1.0, 1.0],
[5.0, 1.0],
[9.0, 1.0],
[1.0, 3.5],
[5.0, 3.5],
[9.0, 3.5],
[1.0, 6.0],
[5.0, 6.0],
[9.0, 6.0],
]
)
observations = ot.Sample(
[[25.0], [25.0], [10.0], [20.0], [25.0], [20.0], [15.0], [25.0], [25.0]]
)
basis = ot.ConstantBasisFactory(2).build()
algo = ot.KrigingAlgorithm(coordinates, observations, covarianceModel, basis)
algo.run()
krigingResult = algo.getResult()
return krigingResult
# Isotropic covariance model
myIsotropicKernel = ot.IsotropicCovarianceModel(ot.SquaredExponential(), 2)
krigingFittedCovarianceModel = fitKriging(myIsotropicKernel).getCovarianceModel()
ott.assert_almost_equal(krigingFittedCovarianceModel.getScale()[0], 2.86427, 0.0, 1e-4)
ott.assert_almost_equal(
krigingFittedCovarianceModel.getAmplitude()[0], 6.65231, 0.0, 1e-4
)
try:
ot.IsotropicCovarianceModel(ot.SquaredExponential(), 0)
raise ValueError("Invalid IsotropicCovarianceModel should have thrown")
except TypeError:
pass
|