1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Test 1
def test_one_input_one_output():
sampleSize = 6
dimension = 1
f = ot.SymbolicFunction(["x0"], ["x0 * sin(x0)"])
X = ot.Sample(sampleSize, dimension)
X2 = ot.Sample(sampleSize, dimension)
for i in range(sampleSize):
X[i, 0] = 3.0 + i
X2[i, 0] = 2.5 + i
X[0, 0] = 1.0
X[1, 0] = 3.0
X2[0, 0] = 2.0
X2[1, 0] = 4.0
Y = f(X)
Y2 = f(X2)
# create covariance model
basis = ot.ConstantBasisFactory(dimension).build()
covarianceModel = ot.SquaredExponential()
# create algorithm
algo = ot.KrigingAlgorithm(X, Y, covarianceModel, basis)
# set sensible optimization bounds and estimate hyperparameters
algo.setOptimizationBounds(ot.Interval(X.getMin(), X.getMax()))
algo.run()
# perform an evaluation
result = algo.getResult()
ott.assert_almost_equal(result.getMetaModel()(X), Y)
ott.assert_almost_equal(result.getResiduals(), [1.32804e-07], 1e-3, 1e-3)
ott.assert_almost_equal(result.getRelativeErrors(), [5.20873e-21])
# Kriging variance is 0 on learning points
covariance = result.getConditionalCovariance(X)
nullMatrix = ot.Matrix(sampleSize, sampleSize)
ott.assert_almost_equal(covariance, nullMatrix, 0.0, 1e-13)
# Kriging variance is non-null on validation points
validCovariance = result.getConditionalCovariance(X2)
values = ot.Matrix(
[
[0.81942182, -0.35599947, -0.17488593, 0.04622401, -0.03143555, 0.04054783],
[-0.35599947, 0.20874735, 0.10943841, -0.03236419, 0.02397483, -0.03269184],
[-0.17488593, 0.10943841, 0.05832917, -0.01779918, 0.01355719, -0.01891618],
[0.04622401, -0.03236419, -0.01779918, 0.00578327, -0.00467674, 0.00688697],
[-0.03143555, 0.02397483, 0.01355719, -0.00467674, 0.0040267, -0.00631173],
[0.04054783, -0.03269184, -0.01891618, 0.00688697, -0.00631173, 0.01059488],
]
)
ott.assert_almost_equal(validCovariance - values, nullMatrix, 0.0, 1e-7)
# Covariance per marginal & extract variance component
coll = result.getConditionalMarginalCovariance(X)
var = [mat[0, 0] for mat in coll]
ott.assert_almost_equal(var, [0] * sampleSize, 1e-14, 1e-13)
# Variance per marginal
var = result.getConditionalMarginalVariance(X)
ott.assert_almost_equal(var, ot.Sample(sampleSize, 1), 1e-14, 1e-13)
# Prediction accuracy
ott.assert_almost_equal(Y2, result.getMetaModel()(X2), 0.3, 0.0)
# Test 2
def test_two_inputs_one_output():
# Kriging use case
inputDimension = 2
# Learning data
levels = [8, 5]
box = ot.Box(levels)
inputSample = box.generate()
# Scale each direction
inputSample *= 10.0
model = ot.SymbolicFunction(["x", "y"], ["cos(0.5*x) + sin(y)"])
outputSample = model(inputSample)
# Validation
sampleSize = 10
inputValidSample = ot.JointDistribution(2 * [ot.Uniform(0, 10.0)]).getSample(
sampleSize
)
outputValidSample = model(inputValidSample)
# 2) Definition of exponential model
# The parameters have been calibrated using TNC optimization
# and AbsoluteExponential models
scales = [5.33532, 2.61534]
amplitude = [1.61536]
covarianceModel = ot.SquaredExponential(scales, amplitude)
# 3) Basis definition
basis = ot.ConstantBasisFactory(inputDimension).build()
# 4) Kriging algorithm
algo = ot.KrigingAlgorithm(inputSample, outputSample, covarianceModel, basis)
algo.run()
result = algo.getResult()
# Get meta model
metaModel = result.getMetaModel()
outData = metaModel(inputValidSample)
# 5) Errors
# Interpolation
ott.assert_almost_equal(outputSample, metaModel(inputSample), 3.0e-5, 3.0e-5)
# 6) Kriging variance is 0 on learning points
covariance = result.getConditionalCovariance(inputSample)
ott.assert_almost_equal(covariance, ot.SquareMatrix(len(inputSample)), 7e-7, 7e-7)
# Covariance per marginal & extract variance component
coll = result.getConditionalMarginalCovariance(inputSample)
var = [mat[0, 0] for mat in coll]
ott.assert_almost_equal(var, [0] * len(var), 0.0, 1e-13)
# Variance per marginal
var = result.getConditionalMarginalVariance(inputSample)
ott.assert_almost_equal(var, ot.Sample(inputSample.getSize(), 1), 0.0, 1e-13)
# Estimation
ott.assert_almost_equal(outputValidSample, outData, 1.0e-1, 1e-1)
def test_two_outputs():
f = ot.SymbolicFunction(["x"], ["x * sin(x)", "x * cos(x)"])
sampleX = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0]]
sampleY = f(sampleX)
# Build a basis phi from R --> R^2
# phi_{0,0} = phi_{0,1} = x
# phi_{1,0} = phi_{1,1} = x^2
phi0 = ot.AggregatedFunction(
[ot.SymbolicFunction(["x"], ["x"]), ot.SymbolicFunction(["x"], ["x"])]
)
phi1 = ot.AggregatedFunction(
[ot.SymbolicFunction(["x"], ["x^2"]), ot.SymbolicFunction(["x"], ["x^2"])]
)
basis = ot.Basis([phi0, phi1])
covarianceModel = ot.SquaredExponential([1.0])
covarianceModel.setActiveParameter([])
covarianceModel = ot.TensorizedCovarianceModel([covarianceModel] * 2)
algo = ot.KrigingAlgorithm(sampleX, sampleY, covarianceModel, basis)
algo.run()
result = algo.getResult()
mm = result.getMetaModel()
assert mm.getOutputDimension() == 2, "wrong output dim"
ott.assert_almost_equal(mm(sampleX), sampleY)
# Check the conditional covariance
reference_covariance = ot.Matrix(
[
[4.4527, 0.0, 8.34404, 0.0],
[0.0, 2.8883, 0.0, 5.41246],
[8.34404, 0.0, 15.7824, 0.0],
[0.0, 5.41246, 0.0, 10.2375],
]
)
ott.assert_almost_equal(
result([[9.5], [10.0]]).getCovariance() - reference_covariance,
ot.Matrix(4, 4),
0.0,
2e-2,
)
def test_stationary_fun():
# fix https://github.com/openturns/openturns/issues/1861
ot.RandomGenerator.SetSeed(0)
rho = ot.SymbolicFunction("tau", "exp(-abs(tau))*cos(2*pi_*abs(tau))")
model = ot.StationaryFunctionalCovarianceModel([1], [1], rho)
x = ot.Normal().getSample(20)
x.setDescription(["J0"])
y = x + ot.Normal(0, 0.1).getSample(20)
y.setDescription(["G0"])
algo = ot.KrigingAlgorithm(x, y, model, ot.LinearBasisFactory().build())
algo.run()
result = algo.getResult()
variance = result.getConditionalMarginalVariance(x)
ott.assert_almost_equal(variance, ot.Sample(len(x), 1), 1e-16, 1e-16)
assert (
algo.getResult().getMetaModel().getOutputDescription() == y.getDescription()
), "wrong output description"
def test_stationary_no_basis():
# fix https://github.com/openturns/openturns/issues/2403
ot.RandomGenerator.SetSeed(0)
model = ot.AbsoluteExponential()
size = 15
x = ot.Normal().getSample(size)
y = x + ot.Normal(0, 0.01).getSample(size)
algo = ot.KrigingAlgorithm(x, y, model)
algo.run()
result = algo.getResult()
variance = result.getConditionalMarginalVariance(x)
ott.assert_almost_equal(variance, ot.Sample(len(x), 1), 1e-15, 1e-15)
if __name__ == "__main__":
test_one_input_one_output()
test_two_inputs_one_output()
test_two_outputs()
test_stationary_fun()
test_stationary_no_basis()
|