1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Set hmat
ot.ResourceMap.SetAsString("KrigingAlgorithm-LinearAlgebra", "HMAT")
def test_one_input_one_output():
sampleSize = 6
dimension = 1
f = ot.SymbolicFunction(["x0"], ["x0 * sin(x0)"])
X = ot.Sample(sampleSize, dimension)
X2 = ot.Sample(sampleSize, dimension)
for i in range(sampleSize):
X[i, 0] = 3.0 + i
X2[i, 0] = 2.5 + i
X[0, 0] = 1.0
X[1, 0] = 3.0
X2[0, 0] = 2.0
X2[1, 0] = 4.0
Y = f(X)
f(X2)
# create algorithm
basis = ot.ConstantBasisFactory(dimension).build()
covarianceModel = ot.SquaredExponential([1e-02], [4.50736])
algo = ot.KrigingAlgorithm(X, Y, covarianceModel, basis)
algo.run()
# perform an evaluation
result = algo.getResult()
ott.assert_almost_equal(result.getMetaModel()(X), Y, 1e-2)
ott.assert_almost_equal(result.getResiduals(), [0.0], 0.0, 1e-2)
ott.assert_almost_equal(result.getRelativeErrors(), [0.0], 0.0, 1e-5)
# Kriging variance is 0 on learning points
covariance = result.getConditionalCovariance(X)
ot.Point(covariance.getImplementation())
ot.Point(sampleSize * sampleSize)
ott.assert_almost_equal(covariance, ot.Matrix(sampleSize, sampleSize), 0.0, 1e-1)
# Covariance per marginal & extract variance component
coll = result.getConditionalMarginalCovariance(X)
var = [mat[0, 0] for mat in coll]
ott.assert_almost_equal(var, [0] * sampleSize, 0.0, 1e-1)
# Variance per marginal
var = result.getConditionalMarginalVariance(X)
ott.assert_almost_equal(var, ot.Sample(sampleSize, 1), 0.0, 1e-1)
# Test 2
def test_two_inputs_one_output():
# Kriging use case
inputDimension = 2
# Learning data
levels = [8, 5]
box = ot.Box(levels)
inputSample = box.generate()
# Scale each direction
inputSample *= 10.0
model = ot.SymbolicFunction(["x", "y"], ["cos(0.5*x) + sin(y)"])
outputSample = model(inputSample)
# Validation
sampleSize = 10
inputValidSample = ot.JointDistribution(2 * [ot.Uniform(0, 10.0)]).getSample(
sampleSize
)
outputValidSample = model(inputValidSample)
# 2) Definition of exponential model
# The parameters have been calibrated using TNC optimization
# and AbsoluteExponential models
covarianceModel = ot.SquaredExponential([5.33532, 2.61534], [1.61536])
# 3) Basis definition
basis = ot.ConstantBasisFactory(inputDimension).build()
# Kriging algorithm
algo = ot.KrigingAlgorithm(inputSample, outputSample, covarianceModel, basis)
algo.run()
result = algo.getResult()
# Get meta model
metaModel = result.getMetaModel()
metaModel(inputValidSample)
# 4) Errors
# Interpolation
ott.assert_almost_equal(outputSample, metaModel(inputSample), 1, 3.0e-5)
# 5) Kriging variance is 0 on learning points
covariance = result.getConditionalCovariance(inputSample)
ott.assert_almost_equal(covariance, ot.SquareMatrix(len(inputSample)), 0.0, 1e-3)
# Covariance per marginal & extract variance component
coll = result.getConditionalMarginalCovariance(inputSample)
var = [mat[0, 0] for mat in coll]
ott.assert_almost_equal(var, [0] * len(var), 0.0, 1e-3)
# Variance per marginal
var = result.getConditionalMarginalVariance(inputSample)
ott.assert_almost_equal(var, ot.Sample(inputSample.getSize(), 1), 0.0, 1e-3)
# Estimation
ott.assert_almost_equal(
outputValidSample, metaModel(inputValidSample), 1.0e-1, 1e-1
)
def test_stationary_fun():
# fix https://github.com/openturns/openturns/issues/1861
ot.RandomGenerator.SetSeed(0)
rho = ot.SymbolicFunction("tau", "exp(-abs(tau))*cos(2*pi_*abs(tau))")
model = ot.StationaryFunctionalCovarianceModel([1], [1], rho)
x = ot.Normal().getSample(20)
y = x + ot.Normal(0, 0.1).getSample(20)
algo = ot.KrigingAlgorithm(x, y, model, ot.LinearBasisFactory().build())
algo.run()
result = algo.getResult()
variance = result.getConditionalMarginalVariance(x)
ott.assert_almost_equal(variance, ot.Sample(len(x), 1), 2e-6, 2e-6)
if __name__ == "__main__":
test_one_input_one_output()
test_two_inputs_one_output()
test_stationary_fun()
|