File: t_LHSExperiment_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (42 lines) | stat: -rwxr-xr-x 1,324 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

distribution = ot.Normal(4)
size = 10
experiment = ot.LHSExperiment(distribution, size)
print("experiment = ", experiment)
sample, weights = experiment.generateWithWeights()
print("sample = ", repr(sample))
print("weights = ", repr(weights))
print("sample2 = ", experiment.generate())
experiment = ot.LHSExperiment(distribution, size, True, True)
print("sample  = ", experiment.generate())
print("sample2 = ", experiment.generate())
experiment = ot.LHSExperiment(distribution, size, False, False)
print("sample  = ", experiment.generate())
print("sample2 = ", experiment.generate())
experiment = ot.LHSExperiment(distribution, size, True, False)
print("sample  = ", experiment.generate())
print("sample2 = ", experiment.generate())
experiment = ot.LHSExperiment(size)
print("sample  = ", experiment.generate())
print("sample2 = ", experiment.generate())

# variable size
experiment = ot.LHSExperiment(ot.Normal(4), 10)
for size in [215, 464]:
    experiment.setSize(size)
    X = experiment.generate()

# with correlation
dimension = 3
mu = ot.Point(dimension)
sigma = ot.CovarianceMatrix(dimension)
sigma[0, 2] = -0.5
distribution = ot.Normal(mu, sigma)
sampleSize = 5
experiment = ot.LHSExperiment(distribution, sampleSize)
sample = experiment.generate()