1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
# First, build two functions from R^3->R
inVar = ot.Description(3)
inVar[0] = "x1"
inVar[1] = "x2"
inVar[2] = "x3"
formula = ot.Description(1)
formula[0] = "x1^3 * sin(x2 + 2.5 * x3) - (x1 + x2)^2 / (1.0 + x3^2)"
functions = []
functions.append(ot.SymbolicFunction(inVar, formula))
formula[0] = "exp(-x1 * x2 + x3) / cos(1.0 + x2 * x3 - x1)"
functions.append(ot.SymbolicFunction(inVar, formula))
# Second, build the weights
coefficients = ot.Point(2)
coefficients[0] = 0.3
coefficients[1] = 2.9
myHessian = ot.LinearCombinationHessian(
ot.LinearCombinationEvaluation(functions, coefficients)
)
inPoint = ot.Point(3)
inPoint[0] = 1.2
inPoint[1] = 2.3
inPoint[2] = 3.4
print("myHessian=", myHessian)
# Reduce the output precision because we use finite difference so only 5
# digits are significant
ot.PlatformInfo.SetNumericalPrecision(5)
print("Value at ", inPoint, "=", myHessian.hessian(inPoint))
|