File: t_LinearLeastSquaresCalibration_noobs.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (82 lines) | stat: -rwxr-xr-x 2,436 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#! /usr/bin/env python
"""
Consider a model exactly linear with respect to the parameters.
In this case, the LLSQ calibration performs as good as it can.
Considers a case without observed inputs.
"""

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()
ot.PlatformInfo.SetNumericalPrecision(5)

ot.RandomGenerator.SetSeed(0)


# This model is linear in (a, b, c) and identifiable.
# Derived from y = a + b * x + c * x^2 at x=[-1.0, -0.6, -0.2, 0.2, 0.6, 1.0]
g = ot.SymbolicFunction(
    ["a", "b", "c"],
    [
        "a +  -1.0  * b +  1.0  * c",
        "a +  -0.6  * b +  0.36  * c",
        "a +  -0.2  * b +  0.04  * c",
        "a +  0.2  * b +  0.04  * c",
        "a +  0.6  * b +  0.36  * c",
        "a +  1.0  * b +  1.0  * c",
    ],
)
outputDimension = g.getOutputDimension()

trueParameter = ot.Point([12.0, 7.0, -8])

parameterDimension = trueParameter.getDimension()

Theta1 = ot.Dirac(trueParameter[0])
Theta2 = ot.Dirac(trueParameter[1])
Theta3 = ot.Dirac(trueParameter[2])

inputRandomVector = ot.JointDistribution([Theta1, Theta2, Theta3])

candidate = ot.Point([8.0, 9.0, -6.0])

calibratedIndices = [0, 1, 2]
model = ot.ParametricFunction(g, calibratedIndices, candidate)

outputObservationNoiseSigma = 0.05
meanNoise = ot.Point(outputDimension)
covarianceNoise = ot.Point(outputDimension, outputObservationNoiseSigma)
R = ot.IdentityMatrix(outputDimension)
observationOutputNoise = ot.Normal(meanNoise, covarianceNoise, R)

size = 1000
inputObservations = ot.Sample(size, 0)

# Generate exact outputs
inputSample = inputRandomVector.getSample(size)
outputStress = g(inputSample)
# Add noise
sampleNoise = observationOutputNoise.getSample(size)
outputObservations = outputStress + sampleNoise
# Calibrate
algo = ot.LinearLeastSquaresCalibration(
    model, inputObservations, outputObservations, candidate, "SVD"
)
algo.run()
calibrationResult = algo.getResult()

# Check residual distribution
residualDistribution = calibrationResult.getObservationsError()
meanResidual = residualDistribution.getMean()[0]
assert meanResidual == 0.0
sigmaResidual = residualDistribution.getStandardDeviation()
print("sigmaResidual=", repr(sigmaResidual))
rtol = 0.0
atol = 5.0e-2
ott.assert_almost_equal(sigmaResidual, covarianceNoise, rtol, atol)

# Check MAP
parameterMAP = calibrationResult.getParameterMAP()
print("MAP=", repr(parameterMAP))
ott.assert_almost_equal(parameterMAP, trueParameter, 1.0e-2)