File: t_LinearLeastSquaresCalibration_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (31 lines) | stat: -rwxr-xr-x 936 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()
ot.PlatformInfo.SetNumericalPrecision(5)

m = 10
x = [[0.5 + i] for i in range(m)]

inVars = ["a", "b", "c", "x"]
formulas = ["a + b * exp(c * x)", "(a * x^2 + b) / (c + x^2)"]
g = ot.SymbolicFunction(inVars, formulas)
trueParameter = [2.8, 1.2, 0.5]
params = [0, 1, 2]
model = ot.ParametricFunction(g, params, trueParameter)
y = model(x)
y += ot.Normal([0.0] * 2, [0.05] * 2, ot.IdentityMatrix(2)).getSample(m)
candidate = [1.0] * 3
methods = ["SVD", "QR", "Cholesky"]
for method in methods:
    print("method=", method)
    algo = ot.LinearLeastSquaresCalibration(model, x, y, candidate, method)
    algo.run()
    result = algo.getResult()
    print("result=", result)
    # Draw result
    graph = result.drawParameterDistributions()
    graph = result.drawResiduals()
    graph = result.drawObservationsVsInputs()
    graph = result.drawObservationsVsPredictions()