File: t_LinearModelAlgorithm_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (40 lines) | stat: -rw-r--r-- 1,155 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Fit y ~ 3 - 2 x + 0.05 * sin(x) model using 20 points (sin(x) ~ noise)
trend coefficients =  [3.01168,-2.00025]
Fit y ~ 1 + 0.1 x + 10 x^2 model using 100 points
result = 
LinearModelResult
- input dimension=2
- basis size=3
- design matrix=100 x 3
- coefficients=3
- formula=Basis( [[v0,v1]->[1],[v0,v1]->[v0],[v0,v1]->[v1]] )
- coefficients names=[[v0,v1]->[1],[v0,v1]->[v0],[v0,v1]->[v1]]
- residuals size=100
- standard residuals size=100
- inverse Gram diagonal=[0.0864939,0.0184756,0.000172994]
- leverages size=100
- Cook's distances size=100
- residuals variance=0.00991604
- has intercept=true
- is model selection=false


trend coefficients =  [0.978992,0.110565,9.99924]
LinearModelResult
- input dimension=2
- basis size=3
- design matrix=100 x 3
- coefficients=3
- formula=Basis( [[X0,X1]->[1],[X0,X1]->[X0],[X0,X1]->[X1]] )
- coefficients names=[[X0,X1]->[1],[X0,X1]->[X0],[X0,X1]->[X1]]
- residuals size=100
- standard residuals size=100
- inverse Gram diagonal=[0.0864939,0.0184756,0.000172994]
- leverages size=100
- Cook's distances size=100
- residuals variance=0.00991604
- has intercept=true
- is model selection=false


[-2,4] 0 [0]