File: t_LowDiscrepancyExperiment_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (47 lines) | stat: -rwxr-xr-x 1,597 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()


distribution = ot.Normal(4)
distribution.setMu([5.0] * 4)
size = 16
experiment = ot.LowDiscrepancyExperiment(ot.HaltonSequence(), distribution, size)
print("experiment = ", experiment)
# Test sampling with weights
sample, weights = experiment.generateWithWeights()
print("sample  = ", sample)
print("weights = ", weights)
# Test sampling with reinitialization each time the distribution is
# set (default behaviour)
# sample 2 != sample
print("sample2 = ", experiment.generate())
experiment.setDistribution(distribution)
# sample 3 == sample
print("sample3 = ", experiment.generate())

# Test sampling without reinitialization excepted when distribution
# dimension changes
experiment = ot.LowDiscrepancyExperiment(ot.HaltonSequence(), distribution, size, False)
print("sample  = ", experiment.generate())
# sample 2 != sample
print("sample2 = ", experiment.generate())
experiment.setDistribution(distribution)
# sample 3 != sample && sample 3 != sample 2
print("sample3 = ", experiment.generate())
# Test dimension change
experiment.setDistribution(ot.Normal())
print("sample = ", experiment.generate())

# Test constructor with no distribution and dimension>1
experiment = ot.LowDiscrepancyExperiment(ot.HaltonSequence(2), size)
print("sample = ", experiment.generate())
# Test with dependent marginals
R = ot.CorrelationMatrix(4)
for i in range(1, 4):
    R[i - 1, i] = 0.5
distribution.setR(R)
experiment = ot.LowDiscrepancyExperiment(ot.HaltonSequence(), distribution, size, False)
print("sample = ", experiment.generate())