File: t_MarginalDistribution_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (88 lines) | stat: -rw-r--r-- 3,421 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
Test indices accessors True
Test distribution accessors True
Distribution  class=MarginalDistribution name=MarginalDistribution dimension=3 distribution=class=Normal name=Normal dimension=5 mean=class=Point name=Unnamed dimension=5 values=[0,0,0,0,0] sigma=class=Point name=Unnamed dimension=5 values=[1,1,1,1,1] correlationMatrix=class=CorrelationMatrix dimension=5 implementation=class=MatrixImplementation name=Unnamed rows=5 columns=5 values=[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] indices=[2,0,1]
Distribution  MarginalDistribution(distribution=Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
 [ 0 1 0 0 0 ]
 [ 0 0 1 0 0 ]
 [ 0 0 0 1 0 ]
 [ 0 0 0 0 1 ]]), indices=[2,0,1])
Elliptical =  True
Continuous =  True
Discrete =  False
Integral =  False
oneRealization= [-0.438266,0.608202,-1.26617]
oneSample first= [1.43725,0.350042,-0.355007]  last= [0.859992,-2.2281,0.884963]
mean= [-0.000164216,0.00955544,0.000744822]
covariance= [[  1.00735     0.0155386  -0.00400052 ]
 [  0.0155386   1.02164    -0.0214975  ]
 [ -0.00400052 -0.0214975   0.997907   ]]
Point=  [1.0, 1.0, 1.0]
ddf     = [-0.0141673,-0.0141673,-0.0141673]
log pdf=-4.25682e+00
pdf     =1.41673e-02
cdf     =5.95555e-01
ccdf    =4.04445e-01
survival=3.99359e-03
Inverse survival= [-2.1212,-2.1212,-2.1212]
Survival(inverse survival)=9.50000e-01
quantile= [2.1212,2.1212,2.1212]
cdf(quantile)=9.50000e-01
quantile (tail)= [-0.336086,-0.336086,-0.336086]
cdf (tail)=9.50000e-01
mean= [0,0,0]
standard deviation= [1,1,1]
skewness= [0,0,0]
kurtosis= [3,3,3]
covariance= [[ 1 0 0 ]
 [ 0 1 0 ]
 [ 0 0 1 ]]
correlation= [[ 1 0 0 ]
 [ 0 1 0 ]
 [ 0 0 1 ]]
spearman= [[ 1 0 0 ]
 [ 0 1 0 ]
 [ 0 0 1 ]]
kendall= [[ 1 0 0 ]
 [ 0 1 0 ]
 [ 0 0 1 ]]
Standard representative= MarginalDistribution(distribution=Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
 [ 0 1 0 0 0 ]
 [ 0 0 1 0 0 ]
 [ 0 0 0 1 0 ]
 [ 0 0 0 0 1 ]]), indices=[2,0,1])
Test indices accessors True
Test distribution accessors True
Distribution  class=MarginalDistribution name=MarginalDistribution dimension=3 distribution=class=Multinomial name=Multinomial dimension=5 p=class=Point name=Unnamed dimension=5 values=[0.142857,0.142857,0.142857,0.142857,0.142857] n=10 indices=[2,0,1]
Distribution  MarginalDistribution(distribution=Multinomial(n = 10, p = [0.142857,0.142857,0.142857,0.142857,0.142857]), indices=[2,0,1])
Elliptical =  False
Continuous =  False
Discrete =  True
Integral =  True
oneRealization= [1,1,2]
oneSample first= [3,2,3]  last= [2,1,2]
mean= [1.4117,1.444,1.4221]
covariance= [[  1.22113  -0.212816 -0.220401 ]
 [ -0.212816  1.25399  -0.210933 ]
 [ -0.220401 -0.210933  1.20305  ]]
Point=  [1.0, 1.0, 1.0]
pdf     =2.50271e-03
cdf     =1.35956e-01
ccdf    =8.64044e-01
survival=4.57828e-01
quantile= [4,4,4]
cdf(quantile)=9.76008e-01
quantile (tail)= [1,1,1]
cdf (tail)=9.96288e-01
mean= [1.42857,1.42857,1.42857]
standard deviation= [1.10657,1.10657,1.10657]
skewness= [0.645497,0.645497,0.645497]
kurtosis= [3.21667,3.21667,3.21667]
covariance= [[  1.22449  -0.204082 -0.204082 ]
 [ -0.204082  1.22449  -0.204082 ]
 [ -0.204082 -0.204082  1.22449  ]]
correlation= [[  1        -0.166667 -0.166667 ]
 [ -0.166667  1        -0.166667 ]
 [ -0.166667 -0.166667  1        ]]
Standard representative= MarginalDistribution(distribution=Multinomial(n = 10, p = [0.142857,0.142857,0.142857,0.142857,0.142857]), indices=[2,0,1])