File: t_MarginalTransformationEvaluation_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (223 lines) | stat: -rwxr-xr-x 8,064 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

coll1 = ot.DistributionCollection(0)
coll1.add(ot.Normal(1.0, 2.5))
coll1.add(ot.Gamma(1.5, 3.0, 0.0))
pointLow = ot.Point(0)
pointLow.add(coll1[0].computeQuantile(0.25)[0])
pointLow.add(coll1[1].computeQuantile(0.25)[0])
pointHigh = ot.Point(0)
pointHigh.add(coll1[0].computeQuantile(0.75)[0])
pointHigh.add(coll1[1].computeQuantile(0.75)[0])
coll2 = ot.DistributionCollection(0)
coll2.add(ot.Gamma(2.5, 2.0, 0.0))
coll2.add(ot.Normal(3.0, 1.5))
# First, check the old constructor
transformation = ot.MarginalTransformationEvaluation(coll1)
print("transformation=", repr(transformation))
print("transformation(", pointLow, ")=", repr(transformation(pointLow)))
print("transformation(", pointHigh, ")=", repr(transformation(pointHigh)))
# Validation using finite difference
eps = 1e-5
factor = 1.0 / (2.0 * eps)
gradientLow = ot.Matrix(5, 2)
gradientHigh = ot.Matrix(5, 2)

# dT/dp0
coll = ot.DistributionCollection(2)
coll[0] = ot.Normal(1.0 + eps, 2.5)
coll[1] = coll1[1]
left = ot.MarginalTransformationEvaluation(coll)
coll[0] = ot.Normal(1.0 - eps, 2.5)
right = ot.MarginalTransformationEvaluation(coll)
dTdp = (left(pointLow) - right(pointLow)) * factor
gradientLow[0, 0] = dTdp[0]
gradientLow[0, 1] = dTdp[1]
dTdp = (left(pointHigh) - right(pointHigh)) * factor
gradientHigh[0, 0] = dTdp[0]
gradientHigh[0, 1] = dTdp[1]
# dT/dp1
coll = ot.DistributionCollection(2)
coll[0] = ot.Normal(1.0, 2.5 + eps)
coll[1] = coll1[1]
left = ot.MarginalTransformationEvaluation(coll)
coll[0] = ot.Normal(1.0, 2.5 - eps)
right = ot.MarginalTransformationEvaluation(coll)
dTdp = (left(pointLow) - right(pointLow)) * factor
gradientLow[1, 0] = dTdp[0]
gradientLow[1, 1] = dTdp[1]
dTdp = (left(pointHigh) - right(pointHigh)) * factor
gradientHigh[1, 0] = dTdp[0]
gradientHigh[1, 1] = dTdp[1]
# dT/dp2
coll = ot.DistributionCollection(2)
coll[0] = coll1[0]
coll[1] = ot.Gamma(1.5 + eps, 3.0, 0.0)
left = ot.MarginalTransformationEvaluation(coll)
coll[1] = ot.Gamma(1.5 - eps, 3.0, 0.0)
right = ot.MarginalTransformationEvaluation(coll)
dTdp = (left(pointLow) - right(pointLow)) * factor
gradientLow[2, 0] = dTdp[0]
gradientLow[2, 1] = dTdp[1]
dTdp = (left(pointHigh) - right(pointHigh)) * factor
gradientHigh[2, 0] = dTdp[0]
gradientHigh[2, 1] = dTdp[1]
# dT/dp3
coll = ot.DistributionCollection(2)
coll[0] = coll1[0]
coll[1] = ot.Gamma(1.5, 3.0 + eps, 0.0)
left = ot.MarginalTransformationEvaluation(coll)
coll[1] = ot.Gamma(1.5, 3.0 - eps, 0.0)
right = ot.MarginalTransformationEvaluation(coll)
dTdp = (left(pointLow) - right(pointLow)) * factor
gradientLow[3, 0] = dTdp[0]
gradientLow[3, 1] = dTdp[1]
dTdp = (left(pointHigh) - right(pointHigh)) * factor
gradientHigh[3, 0] = dTdp[0]
gradientHigh[3, 1] = dTdp[1]
# dT/dp4
coll = ot.DistributionCollection(2)
coll[0] = coll1[0]
coll[1] = ot.Gamma(1.5, 3.0, 0.0 + eps)
left = ot.MarginalTransformationEvaluation(coll)
coll[1] = ot.Gamma(1.5, 3.0, 0.0 - eps)
right = ot.MarginalTransformationEvaluation(coll)
dTdp = (left(pointLow) - right(pointLow)) * factor
gradientLow[4, 0] = dTdp[0]
gradientLow[4, 1] = dTdp[1]
dTdp = (left(pointHigh) - right(pointHigh)) * factor
gradientHigh[4, 0] = dTdp[0]
gradientHigh[4, 1] = dTdp[1]

print(
    "transformation    parameters gradient=",
    repr(transformation.parameterGradient(pointLow)),
)
print("finite difference parameters gradient=", repr(gradientLow))
print(
    "transformation    parameters gradient=",
    repr(transformation.parameterGradient(pointHigh)),
)
print("finite difference parameters gradient=", repr(gradientHigh))
print("input dimension=", transformation.getInputDimension())
print("output dimension=", transformation.getOutputDimension())

# Second, check the constructor for old inverse transformation
transformation = ot.MarginalTransformationEvaluation(
    coll1, ot.MarginalTransformationEvaluation.TO
)
print("transformation=", repr(transformation))
uLow = ot.Point(coll1.getSize(), 0.25)
uHigh = ot.Point(coll1.getSize(), 0.75)
print("transformation(", uLow, ")=", repr(transformation(uLow)))
print("transformation(", uHigh, ")=", repr(transformation(uHigh)))
# Validation using finite difference
# dT/dp0
coll = ot.DistributionCollection(2)
coll[0] = ot.Normal(1.0 + eps, 2.5)
coll[1] = coll1[1]
left = ot.MarginalTransformationEvaluation(coll, ot.MarginalTransformationEvaluation.TO)
coll[0] = ot.Normal(1.0 - eps, 2.5)
right = ot.MarginalTransformationEvaluation(
    coll, ot.MarginalTransformationEvaluation.TO
)
dTdp = (left(uLow) - right(uLow)) * factor
gradientLow[0, 0] = dTdp[0]
gradientLow[0, 1] = dTdp[1]
dTdp = (left(uHigh) - right(uHigh)) * factor
gradientHigh[0, 0] = dTdp[0]
gradientHigh[0, 1] = dTdp[1]
# dT/dp1
coll = ot.DistributionCollection(2)
coll[0] = ot.Normal(1.0, 2.5 + eps)
coll[1] = coll1[1]
left = ot.MarginalTransformationEvaluation(coll, ot.MarginalTransformationEvaluation.TO)
coll[0] = ot.Normal(1.0, 2.5 - eps)
right = ot.MarginalTransformationEvaluation(
    coll, ot.MarginalTransformationEvaluation.TO
)
dTdp = (left(uLow) - right(uLow)) * factor
gradientLow[1, 0] = dTdp[0]
gradientLow[1, 1] = dTdp[1]
dTdp = (left(uHigh) - right(uHigh)) * factor
gradientHigh[1, 0] = dTdp[0]
gradientHigh[1, 1] = dTdp[1]
# dT/dp2
coll = ot.DistributionCollection(2)
coll[0] = coll1[0]
coll[1] = ot.Gamma(1.5 + eps, 3.0, 0.0)
left = ot.MarginalTransformationEvaluation(coll, ot.MarginalTransformationEvaluation.TO)
coll[1] = ot.Gamma(1.5 - eps, 3.0, 0.0)
right = ot.MarginalTransformationEvaluation(
    coll, ot.MarginalTransformationEvaluation.TO
)
dTdp = (left(uLow) - right(uLow)) * factor
gradientLow[2, 0] = dTdp[0]
gradientLow[2, 1] = dTdp[1]
dTdp = (left(uHigh) - right(uHigh)) * factor
gradientHigh[2, 0] = dTdp[0]
gradientHigh[2, 1] = dTdp[1]
# dT/dp3
coll = ot.DistributionCollection(2)
coll[0] = coll1[0]
coll[1] = ot.Gamma(1.5, 3.0 + eps, 0.0)
left = ot.MarginalTransformationEvaluation(coll, ot.MarginalTransformationEvaluation.TO)
coll[1] = ot.Gamma(1.5, 3.0 - eps, 0.0)
right = ot.MarginalTransformationEvaluation(
    coll, ot.MarginalTransformationEvaluation.TO
)
dTdp = (left(uLow) - right(uLow)) * factor
gradientLow[3, 0] = dTdp[0]
gradientLow[3, 1] = dTdp[1]
dTdp = (left(uHigh) - right(uHigh)) * factor
gradientHigh[3, 0] = dTdp[0]
gradientHigh[3, 1] = dTdp[1]
# dT/dp4
coll = ot.DistributionCollection(2)
coll[0] = coll1[0]
coll[1] = ot.Gamma(1.5, 3.0, 0.0 + eps)
left = ot.MarginalTransformationEvaluation(coll, ot.MarginalTransformationEvaluation.TO)
coll[1] = ot.Gamma(1.5, 3.0, 0.0 - eps)
right = ot.MarginalTransformationEvaluation(
    coll, ot.MarginalTransformationEvaluation.TO
)
dTdp = (left(uLow) - right(uLow)) * factor
gradientLow[4, 0] = dTdp[0]
gradientLow[4, 1] = dTdp[1]
dTdp = (left(uHigh) - right(uHigh)) * factor
gradientHigh[4, 0] = dTdp[0]
gradientHigh[4, 1] = dTdp[1]

print(
    "transformation    parameters gradient=",
    repr(transformation.parameterGradient(uLow)),
)
print("finite difference parameters gradient=", repr(gradientLow))
print(
    "transformation    parameters gradient=",
    repr(transformation.parameterGradient(uHigh)),
)
print("finite difference parameters gradient=", repr(gradientHigh))
print("input dimension=", transformation.getInputDimension())
print("output dimension=", transformation.getOutputDimension())

# Third, check the constructor for the new transformation
transformation = ot.MarginalTransformationEvaluation(coll1, coll2)
print("transformation=", repr(transformation))
print("transformation(", pointLow, ")=", repr(transformation(pointLow)))
print("transformation(", pointHigh, ")=", repr(transformation(pointHigh)))
print("input dimension=", transformation.getInputDimension())
print("output dimension=", transformation.getOutputDimension())

T1 = ot.MarginalTransformationEvaluation([ot.Exponential(2.0)], [ot.Exponential(1.0)])
print("T1=", T1)
T2 = ot.MarginalTransformationEvaluation([ot.Exponential(1.0)], [ot.Exponential(2.0)])
print("T2=", T2)
T3 = ot.MarginalTransformationEvaluation(
    [ot.Exponential(3.0, 4.0)], [ot.Exponential(3.0, 5.0)]
)
print("T3=", T3)