File: t_MarginalTransformationGradient_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (107 lines) | stat: -rwxr-xr-x 3,275 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

coll1 = ot.DistributionCollection(0)
coll1.add(ot.Normal(1.0, 2.5))
coll1.add(ot.Gamma(1.5, 3.0))
pointLow = ot.Point(0)
pointLow.add(coll1[0].computeQuantile(0.25)[0])
pointLow.add(coll1[1].computeQuantile(0.25)[0])
pointHigh = ot.Point(0)
pointHigh.add(coll1[0].computeQuantile(0.75)[0])
pointHigh.add(coll1[1].computeQuantile(0.75)[0])
coll2 = ot.DistributionCollection(0)
coll2.add(ot.Gamma(2.5, 2.0))
coll2.add(ot.Normal(3.0, 1.5))
# First, check the old constructor
evaluation = ot.MarginalTransformationEvaluation(coll1)
transformation = ot.MarginalTransformationGradient(evaluation)

print("transformation=", repr(transformation))
print(
    "transformation.gradient(",
    repr(pointLow),
    ")=",
    repr(transformation.gradient(pointLow)),
)
print(
    "finite difference gradient(",
    repr(pointLow),
    ")=",
    repr(ot.CenteredFiniteDifferenceGradient(1.0e-5, evaluation).gradient(pointLow)),
)
print(
    "transformation.gradient(",
    repr(pointHigh),
    ")=",
    repr(transformation.gradient(pointHigh)),
)
print(
    "finite difference gradient(",
    repr(pointHigh),
    ")=",
    repr(ot.CenteredFiniteDifferenceGradient(1.0e-5, evaluation).gradient(pointHigh)),
)
print("input dimension=", transformation.getInputDimension())
print("output dimension=", transformation.getOutputDimension())

# Second, check the constructor for old inverse transformation
evaluation = ot.MarginalTransformationEvaluation(
    coll1, ot.MarginalTransformationEvaluation.TO
)
transformation = ot.MarginalTransformationGradient(evaluation)
print("transformation=", repr(transformation))
uLow = ot.Point(coll1.getSize(), 0.25)
uHigh = ot.Point(coll1.getSize(), 0.75)
print("transformation.gradient(", repr(uLow), ")=", repr(transformation.gradient(uLow)))
print(
    "finite difference gradient(",
    repr(uLow),
    ")=",
    repr(ot.CenteredFiniteDifferenceGradient(1.0e-5, evaluation).gradient(uLow)),
)
print(
    "transformation.gradient(", repr(uHigh), ")=", repr(transformation.gradient(uHigh))
)
print(
    "finite difference gradient(",
    repr(uHigh),
    ")=",
    repr(ot.CenteredFiniteDifferenceGradient(1.0e-5, evaluation).gradient(uHigh)),
)
print("input dimension=", transformation.getInputDimension())
print("output dimension=", transformation.getOutputDimension())

# Third, check the constructor for the new transformation
evaluation = ot.MarginalTransformationEvaluation(coll1, coll2)
transformation = ot.MarginalTransformationGradient(evaluation)
print("transformation=", repr(transformation))
print(
    "transformation.gradient(",
    repr(pointLow),
    ")=",
    repr(transformation.gradient(pointLow)),
)
print(
    "finite difference gradient(",
    repr(pointLow),
    ")=",
    repr(ot.CenteredFiniteDifferenceGradient(1.0e-5, evaluation).gradient(pointLow)),
)
print(
    "transformation.gradient(",
    repr(pointHigh),
    ")=",
    repr(transformation.gradient(pointHigh)),
)
print(
    "finite difference gradient(",
    repr(pointHigh),
    ")=",
    repr(ot.CenteredFiniteDifferenceGradient(1.0e-5, evaluation).gradient(pointHigh)),
)
print("input dimension=", transformation.getInputDimension())
print("output dimension=", transformation.getOutputDimension())