1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
ot.PlatformInfo.SetNumericalPrecision(4)
coll1 = ot.DistributionCollection(0)
coll1.add(ot.Normal(1.0, 2.5))
coll1.add(ot.Gamma(1.5, 3.0))
pointLow = ot.Point(0)
pointLow.add(coll1[0].computeQuantile(0.25)[0])
pointLow.add(coll1[1].computeQuantile(0.25)[0])
pointHigh = ot.Point(0)
pointHigh.add(coll1[0].computeQuantile(0.75)[0])
pointHigh.add(coll1[1].computeQuantile(0.75)[0])
coll2 = ot.DistributionCollection(0)
coll2.add(ot.Gamma(2.5, 2.0))
coll2.add(ot.Normal(3.0, 1.5))
# First, check the old constructor
evaluation = ot.MarginalTransformationEvaluation(coll1)
transformation = ot.MarginalTransformationHessian(evaluation)
print("transformation=", repr(transformation))
print(
"transformation.hessian(",
repr(pointLow),
")=",
repr(transformation.hessian(pointLow)),
)
print(
"finite difference hessian(",
repr(pointLow),
")=",
repr(ot.CenteredFiniteDifferenceHessian(1.0e-4, evaluation).hessian(pointLow)),
)
print(
"transformation.hessian(",
repr(pointHigh),
")=",
repr(transformation.hessian(pointHigh)),
)
print(
"finite difference hessian(",
repr(pointHigh),
")=",
repr(ot.CenteredFiniteDifferenceHessian(1.0e-4, evaluation).hessian(pointHigh)),
)
print("input dimension=", transformation.getInputDimension())
print("output dimension=", transformation.getOutputDimension())
# Second, check the constructor for old inverse transformation
evaluation = ot.MarginalTransformationEvaluation(
coll1, ot.MarginalTransformationEvaluation.TO
)
transformation = ot.MarginalTransformationHessian(evaluation)
print("transformation=", repr(transformation))
uLow = ot.Point(coll1.getSize(), 0.25)
uHigh = ot.Point(coll1.getSize(), 0.75)
print("transformation.hessian(", repr(uLow), ")=", repr(transformation.hessian(uLow)))
print(
"finite difference hessian(",
repr(uLow),
")=",
repr(ot.CenteredFiniteDifferenceHessian(1.0e-4, evaluation).hessian(uLow)),
)
print("transformation.hessian(", repr(uHigh), ")=", repr(transformation.hessian(uHigh)))
print(
"finite difference hessian(",
repr(uHigh),
")=",
repr(ot.CenteredFiniteDifferenceHessian(1.0e-4, evaluation).hessian(uHigh)),
)
print("input dimension=", transformation.getInputDimension())
print("output dimension=", transformation.getOutputDimension())
# Third, check the constructor for the new transformation
evaluation = ot.MarginalTransformationEvaluation(coll1, coll2)
transformation = ot.MarginalTransformationHessian(evaluation)
print("transformation=", repr(transformation))
print(
"transformation.hessian(",
repr(pointLow),
")=",
repr(transformation.hessian(pointLow)),
)
print(
"finite difference hessian(",
repr(pointLow),
")=",
repr(ot.CenteredFiniteDifferenceHessian(1.0e-4, evaluation).hessian(pointLow)),
)
print(
"transformation.hessian(",
repr(pointHigh),
")=",
repr(transformation.hessian(pointHigh)),
)
print(
"finite difference hessian(",
repr(pointHigh),
")=",
repr(ot.CenteredFiniteDifferenceHessian(1.0e-4, evaluation).hessian(pointHigh)),
)
print("input dimension=", transformation.getInputDimension())
print("output dimension=", transformation.getOutputDimension())
|