File: t_Matrix_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (189 lines) | stat: -rwxr-xr-x 5,294 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#! /usr/bin/env python

import openturns as ot
import math as m

ot.TESTPREAMBLE()


# TEST NUMBER ZERO : DEFAULT CONSTRUCTOR AND STRING CONVERTER
print("test number zero : default constructor and string converter")

# Default constructor
matrix0 = ot.Matrix()

# String converter
print("matrix0 = ", repr(matrix0))

# TEST NUMBER ONE : CONSTRUCTOR WITH SIZE, OPERATOR() AND STRING CONVERTER
print("test number one : constructor with size, operator() and string converter")

# Constructor with size
matrix1 = ot.Matrix(2, 2)

# Check operator() methods
matrix1[0, 0] = 1.0
matrix1[1, 0] = 2.0
matrix1[0, 1] = 3.0
matrix1[1, 1] = 4.0

# String converter
print("matrix1 = ", repr(matrix1))

# TEST NUMBER TWO : COPY CONSTRUCTOR AND STRING CONVERTER
print("test number two : copy constructor and string converter")

# Copy constructor
matrix2 = ot.Matrix(matrix1)

# String converter
print("matrix2 = ", repr(matrix2))

# TEST NUMBER THREE : GET DIMENSIONS METHODS
print("test number three : get dimensions methods")

# Get dimension methods
print("matrix1's nbRows = ", matrix1.getNbRows())
print("matrix1's nbColumns = ", matrix1.getNbColumns())

# TEST NUMBER FOUR : CONSTRUCTOR WITH COLLECTION
print("test number four : constructor with collection method")

# Create the collection of values
elementsValues = ot.ScalarCollection()
elementsValues.add(1.0)
elementsValues.add(2.0)
elementsValues.add(3.0)
elementsValues.add(4.0)
elementsValues.add(5.0)
elementsValues.add(6.0)

# Check the content of the collection
print("elementsValues = ", repr(elementsValues))

# Check the constructor with collection
matrix0bis = ot.Matrix(2, 2, elementsValues)
print("matrix0bis = ", repr(matrix0bis))

# TEST NUMBER FIVE : ASSIGNMENT METHOD
print("test number five : assignment method")

# Assignment method
# No sense with python

# TEST NUMBER SIX : TRANSPOSITION METHOD
print("test number six : transposition method")

# Check transpose method
matrix4 = matrix1.transpose()
print("matrix1 transposed = ", repr(matrix4))

# TEST NUMBER SEVEN : ADDITION METHOD
print("test number seven : addition method")

# Check addition method : we check the operator and the symmetry of the
# operator, thus testing the comparison operator
sum1 = matrix1 + matrix4
sum2 = matrix4 + matrix1
print("sum1 = ", repr(sum1))
print("sum2 = ", repr(sum2))
print("sum1 equals sum2 = ", sum1 == sum2)

# TEST NUMBER EIGHT : SUBTRACTION METHOD
print("test number eight : subtraction method")

# Check subtraction method
diff = matrix1 - matrix4
print("diff = ", repr(diff))

# TEST NUMBER NINE : MATRIX MULTIPLICATION METHOD
print("test number nine : matrix multiplication method")

# Check multiplication method
prod = matrix1 * matrix4
print("prod = ", repr(prod))

# TEST NUMBER TEN : MULTIPLICATION WITH A NUMERICAL POINT METHOD
print("test number ten : multiplication with a numerical point method")

# Create the numerical point
pt = ot.Point([1.0, 2.0])
print("pt = ", repr(pt))

# Check the product method
ptResult = matrix1 * pt
print("ptResult = ", repr(ptResult))

# TEST NUMBER ELEVEN : MULTIPLICATION AND DIVISION BY A NUMERICAL SCALAR
# METHODS
print("test number eleven : multiplication and division by a numerical scalar methods")

# Check the multiplication method
s = 3.0
scalprod1 = matrix1 * s
# bug PYTHON scalprod2 = s * matrix1
scalprod3 = matrix1 * s
print("scalprod1 = ", repr(scalprod1))
# print  "scalprod2 = " , scalprod2
print("scalprod3 = ", repr(scalprod3))
# print  "scalprod1 equals scalprod2 = " , (scalprod1 == scalprod2)
print("scalprod1 equals scalprod3 = ", (scalprod1 == scalprod3))
# print  "scalprod2 equals scalprod3 = " , (scalprod2 == scalprod3)

# Check the division method
scaldiv1 = matrix1 / s
scaldiv2 = matrix1 / s
print("scaldiv1 = ", repr(scaldiv1))
print("scaldiv2 = ", repr(scaldiv2))
print("scaldiv1 equals scaldiv2 = ", (scaldiv1 == scaldiv2))

# TEST NUMBER TWELVE : ISEMPTY METHOD
print("test number twelve : isEmpty method")

# Check method isEmpty
matrix5 = ot.Matrix()
matrix6 = ot.Matrix()
# matrix6.setDimensions(0,3)
print("matrix1 is empty = ", matrix1.isEmpty())
print("matrix5 is empty = ", matrix5.isEmpty())
print("matrix6 is empty = ", matrix6.isEmpty())
print("matrix0 is empty = ", matrix0.isEmpty())

# TEST NUMBER FOURTEEN : MULTIPLICATION WITH A NUMERICAL POINT METHOD
print("test number fourteen : multiplication with a numerical point method")

# Create the numerical point
pt_test = ot.Point([1.0, 2.0])
print("pt_test = ", repr(pt_test))

A = ot.Matrix(2, 2)
A[0, 0] = 0.5
A[1, 0] = -(m.sqrt(3.0) / 2)
A[0, 1] = m.sqrt(3.0) / 2
A[1, 1] = 0.5
B = A.transpose()
id = B * A

# Check the product method
ptResult2 = id * pt_test
print("A = ", repr(A))
print("B = ", repr(B))
print("id = ", repr(id))
print("ptResult2 = ", repr(ptResult2))

# TEST NUMBER FIFTEEN : MULTIPLICATION WITH A SAMPLE
print("test number fifteen : multiplication with a sample")
s = ot.Sample([[1.0, 3.0, -1.0, -3.0], [-2.0, -5.0, 3.0, 1.0]])
matrix32 = ot.Matrix(3, 2, [1.0 + i for i in range(6)])
print("matrix32 = ", repr(matrix32))
print("s = ", repr(s))
sampleResult1 = matrix32 * s
print("matrix32*s = ", repr(sampleResult1))

# unary minus
A = ot.Matrix([[1, 2], [3, 4]])
print(-A)

# norm
norm = A.frobeniusNorm()
assert norm == sum([i * i for i in range(1, 5)]) ** 0.5