File: t_MeixnerDistribution_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (116 lines) | stat: -rwxr-xr-x 4,182 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()


ot.ResourceMap.SetAsUnsignedInteger("MeixnerDistribution-CDFIntegrationNodesNumber", 8)
ot.ResourceMap.SetAsUnsignedInteger("MeixnerDistribution-CDFDiscretization", 100)
ot.ResourceMap.SetAsScalar("MeixnerDistribution-MaximumAbsoluteError", 1.0e-6)
ot.ResourceMap.SetAsScalar("MeixnerDistribution-MaximumRelativeError", 1.0e-6)
ot.ResourceMap.SetAsScalar("MeixnerDistribution-MaximumConstraintError", 1.0e-6)
ot.ResourceMap.SetAsScalar("MeixnerDistribution-MaximumObjectiveError", 1.0e-6)

# Instantiate one distribution object
distribution = ot.MeixnerDistribution(1.5, 0.5, 2.5, -0.5)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)

# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())

# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())

# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)

# Define a point
point = ot.Point(distribution.getDimension(), 1.0)
print("Point= ", point)

# Show PDF and CDF of point
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf     =%.6f" % PDF)

print("PDF gradient=", distribution.computePDFGradient(point))
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
print("CDF gradient=", distribution.computeCDFGradient(point))
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
CF = distribution.computeCharacteristicFunction(point[0])
print("characteristic function=(%.12g%+.12gj)" % (CF.real, CF.imag))
LCF = distribution.computeLogCharacteristicFunction(point[0])
print("log characteristic function=(%.12g%+.12gj)" % (LCF.real, LCF.imag))
quantile = distribution.computeQuantile(0.95)
print("quantile=", quantile)
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
    "Survival(inverseSurvival)=%.6f"
    % distribution.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % distribution.computeEntropy())

# Confidence regions
interval, threshold = distribution.computeMinimumVolumeIntervalWithMarginalProbability(
    0.95
)
print("Minimum volume interval=", interval)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
interval, beta = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(
    0.95
)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
(
    interval,
    beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, False)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
    interval,
    beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, True)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))

mean = distribution.getMean()
print("mean=", mean)
covariance = distribution.getCovariance()
print("covariance=", covariance)
parameters = distribution.getParametersCollection()
print("parameters=", parameters)
print("Standard representative=", distribution.getStandardRepresentative())

# Specific to this distribution
alpha = distribution.getAlpha()
print("alpha=%.6f" % alpha)
beta = distribution.getBeta()
print("beta=%.6f" % beta)
delta = distribution.getDelta()
print("delta=%.6f" % delta)
gamma = distribution.getGamma()
print("gamma=%.6f" % gamma)
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", standardDeviation)
skewness = distribution.getSkewness()
print("skewness=", skewness)
kurtosis = distribution.getKurtosis()
print("kurtosis=", kurtosis)

ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.run()