1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Instantiate one distribution object
dimension = 3
meanPoint = ot.Point(dimension, 1.0)
meanPoint[0] = 0.5
meanPoint[1] = -0.5
sigma = ot.Point(dimension, 1.0)
sigma[0] = 2.0
sigma[1] = 3.0
R = ot.CorrelationMatrix(dimension)
for i in range(1, dimension):
R[i, i - 1] = 0.5
# Create a collection of distribution
aCollection = ot.DistributionCollection()
aCollection.add(ot.Normal(meanPoint, sigma, R))
meanPoint += ot.Point(meanPoint.getDimension(), 1.0)
aCollection.add(ot.Normal(meanPoint, sigma, R))
meanPoint += ot.Point(meanPoint.getDimension(), 1.0)
aCollection.add(ot.Normal(meanPoint, sigma, R))
# Instantiate one distribution object
distribution = ot.Mixture(aCollection, ot.Point(aCollection.getSize(), 2.0))
print("Distribution ", repr(distribution))
print("Weights = ", repr(distribution.getWeights()))
weights = distribution.getWeights()
weights[0] = 2.0 * weights[0]
distribution.setWeights(weights)
print("After update, new weights = ", repr(distribution.getWeights()))
distribution = ot.Mixture(aCollection)
print("Distribution ", repr(distribution))
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
# Test for sampling
size = 1000
oneSample = distribution.getSample(size)
print("oneSample first=", repr(oneSample[0]), " last=", repr(oneSample[size - 1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))
# Define a point
point = ot.Point(distribution.getDimension(), 1.0)
print("Point= ", repr(point))
# derivative of PDF with regards its arguments
DDF = distribution.computeDDF(point)
print("ddf =", repr(DDF))
# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf =%.6f" % PDF)
x = 0.6
y = [0.2] * (dimension - 1)
print("conditional PDF%.6f" % distribution.computeConditionalPDF(x, y))
print("conditional CDF%.6f" % distribution.computeConditionalCDF(x, y))
print("conditional quantile%.6f" % distribution.computeConditionalQuantile(x, y))
pt = ot.Point([i + 1.5 for i in range(dimension)])
print(
"sequential conditional PDF=", distribution.computeSequentialConditionalPDF(point)
)
resCDF = distribution.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
distribution.computeSequentialConditionalQuantile(resCDF),
)
# derivative of the PDF with regards the parameters of the distribution
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
PDFgr = distribution.computePDFGradient(point)
assert distribution.computePDFGradient([point]).getDimension() == len(PDFgr)
print("pdf gradient=", PDFgr)
# derivative of the PDF with regards the parameters of the distribution
CDFgr = distribution.computeCDFGradient(point)
print("cdf gradient=", CDFgr)
# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f"
% distribution.computeSurvivalFunction(inverseSurvival)
)
# Confidence regions
if distribution.getDimension() <= 2:
(
interval,
threshold,
) = distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
print("Minimum volume interval=", interval)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, False
)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, True
)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))
mean = distribution.getMean()
print("mean=", repr(mean))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
parameter = distribution.getParameter()
print("parameter=", parameter)
parameterDescription = distribution.getParameterDescription()
print("parameter description=", parameterDescription)
distribution.setParameter(parameter)
print("Standard representative=", distribution.getStandardRepresentative())
# Constructor with separate weights. Also check small weights removal
weights = [1.0e-20, 2.5, 32.0]
atoms = ot.DistributionCollection(
[ot.Normal(1.0, 1.0), ot.Normal(2.0, 2.0), ot.Normal(3.0, 3.0)]
)
newMixture = ot.Mixture(atoms, weights)
print("newMixture pdf= %.12g" % newMixture.computePDF(2.5))
print("atoms kept in mixture=", newMixture.getDistributionCollection())
print("newMixture=", newMixture)
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipMoments() # slow
validation.skipCorrelation() # slow
validation.run()
# check for non stricly increasing CDF: must return the inf of [1, 2]
distribution = ot.Mixture([ot.Uniform(0.0, 1.0), ot.Uniform(2.0, 3.0)])
q = distribution.computeQuantile(0.5)[0]
print(f"q={q:.6f}")
|