File: t_MonteCarloLHS_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (115 lines) | stat: -rw-r--r-- 4,974 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
lhs= LHSExperiment(distribution=class=JointDistribution name=JointDistribution dimension=3 copula=class=IndependentCopula name=IndependentCopula dimension=3 marginal[0]=class=Uniform name=Uniform dimension=1 a=0 b=1 marginal[1]=class=Uniform name=Uniform dimension=1 a=0 b=1 marginal[2]=class=Uniform name=Uniform dimension=1 a=0 b=1, size25, always shuffle=true, random shift=false
Bounds of uniform distributions= [0, 1]
[0, 1]
[0, 1]
design=      [ X0   X1   X2   ]
 0 : [ 0.18 0.86 0.26 ]
 1 : [ 0.66 0.22 0.62 ]
 2 : [ 0.98 0.34 0.86 ]
 3 : [ 0.7  0.26 0.74 ]
 4 : [ 0.94 0.54 0.54 ]
 5 : [ 0.22 0.66 0.5  ]
 6 : [ 0.86 0.9  0.1  ]
 7 : [ 0.74 0.1  0.38 ]
 8 : [ 0.46 0.78 0.3  ]
 9 : [ 0.82 0.7  0.82 ]
10 : [ 0.26 0.62 0.02 ]
11 : [ 0.54 0.06 0.34 ]
12 : [ 0.1  0.58 0.7  ]
13 : [ 0.9  0.74 0.14 ]
14 : [ 0.02 0.3  0.78 ]
15 : [ 0.58 0.14 0.46 ]
16 : [ 0.78 0.46 0.94 ]
17 : [ 0.3  0.42 0.9  ]
18 : [ 0.5  0.5  0.58 ]
19 : [ 0.38 0.82 0.06 ]
20 : [ 0.42 0.02 0.98 ]
21 : [ 0.14 0.98 0.42 ]
22 : [ 0.34 0.18 0.18 ]
23 : [ 0.06 0.94 0.22 ]
24 : [ 0.62 0.38 0.66 ]
PhiP=7.538512, C2=0.080495, MinDist=0.132665
optimal lhs= class=MonteCarloLHS name=Unnamed lhs=class=LHSExperiment name=Unnamed distribution=class=JointDistribution name=JointDistribution dimension=3 copula=class=IndependentCopula name=IndependentCopula dimension=3 marginal[0]=class=Uniform name=Uniform dimension=1 a=0 b=1 marginal[1]=class=Uniform name=Uniform dimension=1 a=0 b=1 marginal[2]=class=Uniform name=Uniform dimension=1 a=0 b=1 size=25 alwaysShuffle=true random shift=false spaceFilling=class=SpaceFilling implementation=class=SpaceFillingC2 minimization=true simulation size=1000
Best design with MonteCarlo and C2 space filling=      [ X0   X1   X2   ]
 0 : [ 0.26 0.22 0.66 ]
 1 : [ 0.78 0.74 0.58 ]
 2 : [ 0.18 0.9  0.82 ]
 3 : [ 0.5  0.7  0.22 ]
 4 : [ 0.62 0.98 0.1  ]
 5 : [ 0.7  0.46 0.54 ]
 6 : [ 0.22 0.66 0.3  ]
 7 : [ 0.54 0.58 0.7  ]
 8 : [ 0.46 0.34 0.94 ]
 9 : [ 0.9  0.62 0.9  ]
10 : [ 0.74 0.38 0.98 ]
11 : [ 0.94 0.06 0.78 ]
12 : [ 0.58 0.5  0.26 ]
13 : [ 0.34 0.54 0.06 ]
14 : [ 0.42 0.02 0.46 ]
15 : [ 0.66 0.82 0.86 ]
16 : [ 0.38 0.18 0.14 ]
17 : [ 0.82 0.26 0.34 ]
18 : [ 0.1  0.42 0.5  ]
19 : [ 0.02 0.3  0.18 ]
20 : [ 0.98 0.78 0.42 ]
21 : [ 0.06 0.94 0.62 ]
22 : [ 0.86 0.1  0.02 ]
23 : [ 0.14 0.14 0.74 ]
24 : [ 0.3  0.86 0.38 ]
Final criteria: C2=0.048262, PhiP=6.063391, MinDist=0.164924
optimal lhs= class=MonteCarloLHS name=Unnamed lhs=class=LHSExperiment name=Unnamed distribution=class=JointDistribution name=JointDistribution dimension=3 copula=class=IndependentCopula name=IndependentCopula dimension=3 marginal[0]=class=Uniform name=Uniform dimension=1 a=0 b=1 marginal[1]=class=Uniform name=Uniform dimension=1 a=0 b=1 marginal[2]=class=Uniform name=Uniform dimension=1 a=0 b=1 size=25 alwaysShuffle=true random shift=false spaceFilling=class=SpaceFilling implementation=class=SpaceFillingPhiP p=50 simulation size=1000
Best design with MonteCarlo and PhiP space filling=      [ X0   X1   X2   ]
 0 : [ 0.7  0.5  0.42 ]
 1 : [ 0.66 0.46 0.62 ]
 2 : [ 0.46 0.94 0.02 ]
 3 : [ 0.42 0.18 0.18 ]
 4 : [ 0.3  0.14 0.46 ]
 5 : [ 0.74 0.74 0.14 ]
 6 : [ 0.22 0.86 0.3  ]
 7 : [ 0.94 0.22 0.82 ]
 8 : [ 0.98 0.1  0.38 ]
 9 : [ 0.38 0.9  0.94 ]
10 : [ 0.5  0.62 0.7  ]
11 : [ 0.58 0.02 0.86 ]
12 : [ 0.14 0.26 0.66 ]
13 : [ 0.62 0.06 0.26 ]
14 : [ 0.86 0.98 0.58 ]
15 : [ 0.26 0.58 0.5  ]
16 : [ 0.54 0.38 0.78 ]
17 : [ 0.78 0.42 0.1  ]
18 : [ 0.1  0.3  0.9  ]
19 : [ 0.82 0.66 0.74 ]
20 : [ 0.18 0.82 0.98 ]
21 : [ 0.34 0.7  0.22 ]
22 : [ 0.02 0.78 0.34 ]
23 : [ 0.9  0.34 0.54 ]
24 : [ 0.06 0.54 0.06 ]
Final criteria: C2=0.054637, PhiP=4.849115, MinDist=0.207846
optimal lhs= class=MonteCarloLHS name=Unnamed lhs=class=LHSExperiment name=Unnamed distribution=class=JointDistribution name=JointDistribution dimension=3 copula=class=IndependentCopula name=IndependentCopula dimension=3 marginal[0]=class=Uniform name=Uniform dimension=1 a=0 b=1 marginal[1]=class=Uniform name=Uniform dimension=1 a=0 b=1 marginal[2]=class=Uniform name=Uniform dimension=1 a=0 b=1 size=25 alwaysShuffle=true random shift=false spaceFilling=class=SpaceFilling implementation=class=SpaceFillingMinDist minimization=false simulation size=1000
Best design with MonteCarlo and MinDist space filling=      [ X0   X1   X2   ]
 0 : [ 0.94 0.82 0.42 ]
 1 : [ 0.98 0.06 0.82 ]
 2 : [ 0.62 0.26 0.7  ]
 3 : [ 0.82 0.1  0.38 ]
 4 : [ 0.38 0.62 0.74 ]
 5 : [ 0.86 0.22 0.66 ]
 6 : [ 0.54 0.34 0.1  ]
 7 : [ 0.3  0.9  0.02 ]
 8 : [ 0.22 0.7  0.9  ]
 9 : [ 0.78 0.42 0.86 ]
10 : [ 0.9  0.3  0.46 ]
11 : [ 0.06 0.46 0.94 ]
12 : [ 0.18 0.94 0.78 ]
13 : [ 0.42 0.58 0.18 ]
14 : [ 0.58 0.74 0.54 ]
15 : [ 0.34 0.78 0.34 ]
16 : [ 0.14 0.54 0.3  ]
17 : [ 0.74 0.66 0.14 ]
18 : [ 0.26 0.02 0.5  ]
19 : [ 0.02 0.86 0.22 ]
20 : [ 0.1  0.5  0.62 ]
21 : [ 0.7  0.98 0.06 ]
22 : [ 0.46 0.14 0.58 ]
23 : [ 0.66 0.18 0.26 ]
24 : [ 0.5  0.38 0.98 ]
Final criteria: C2=0.069361, PhiP=4.679805, MinDist=0.215407