File: t_Multinomial_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (75 lines) | stat: -rwxr-xr-x 2,247 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()


# Instantiate one distribution object
distribution = ot.Multinomial(5, ot.Point(3, 0.25))
print("Distribution ", repr(distribution))
print("Distribution ", distribution)

# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())

# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())

# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)

print("support=\n" + str(distribution.getSupport()))
interval = ot.Interval(
    ot.Point(distribution.getDimension(), 1.0),
    ot.Point(distribution.getDimension(), 3.0),
)
print(
    "support restricted to the interval=\n"
    + str(interval)
    + " gives=\n"
    + str(distribution.getSupport(interval))
)

# Define a point
point = ot.Point(distribution.getDimension(), 1.0)
print("Point= ", repr(point))

# Show PDF and CDF at point
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf     =%.6f" % PDF)
CDF = distribution.computeCDF(point)
print("cdf=%.5f" % CDF)
proba = distribution.computeProbability(
    ot.Interval(
        [i for i in range(distribution.getDimension())],
        [i + 1.0 for i in range(distribution.getDimension())],
    )
)
print("probability=%.5f" % proba)
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)= %.6f" % distribution.computeCDF(quantile))
print("entropy=%.6f" % distribution.computeEntropy())

mean = distribution.getMean()
print("mean=", repr(mean))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
parameter = distribution.getParameter()
print("parameter=", repr(parameter))
print("parameterDesc=", distribution.getParameterDescription())
distribution.setParameter(parameter)

ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipMoments()  # slow
validation.skipCorrelation()  # slow
validation.skipConditional()  # FIXME
validation.run()