File: t_NormalCopulaFactory_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (31 lines) | stat: -rwxr-xr-x 1,013 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

dim = 3
R = ot.CorrelationMatrix(dim)
for i in range(dim):
    for j in range(i):
        R[i, j] = 0.5 * (1.0 + i) / dim
distribution = ot.NormalCopula(R)
size = 10000
sample = distribution.getSample(size)
factory = ot.NormalCopulaFactory()
estimatedDistribution = factory.build(sample)
print("distribution=", distribution)
print("Estimated distribution=", estimatedDistribution)

# non-regression for #572
estimated_dist = ot.NormalCopulaFactory().build(distribution.getSample(10))
mydist = ot.JointDistribution(
    ot.DistributionCollection(dim, ot.Normal()), estimated_dist
)
estimatedDistribution = factory.build()
print("Default distribution=", estimatedDistribution)
estimatedNormalCopula = factory.buildAsNormalCopula(sample)
print("NormalCopula          =", distribution)
print("Estimated normalCopula=", estimatedNormalCopula)
estimatedNormalCopula = factory.buildAsNormalCopula()
print("Default normalCopula=", estimatedNormalCopula)