File: t_NormalCopula_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (71 lines) | stat: -rw-r--r-- 4,170 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
Copula  class=NormalCopula name=NormalCopula dimension=3 correlation=class=CorrelationMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.25,0,0.25,1,0.25,0,0.25,1]
Copula  NormalCopula(R = [[ 1    0.25 0    ]
 [ 0.25 1    0.25 ]
 [ 0    0.25 1    ]])
Mean  class=Point name=Unnamed dimension=3 values=[0.5,0.5,0.5]
Covariance  class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[0.0833333,0.0199465,0,0.0199465,0.0833333,0.0199465,0,0.0199465,0.0833333]
Elliptical distribution=  False
Elliptical copula=  True
Independent copula=  False
oneRealization= class=Point name=Unnamed dimension=3 values=[0.728473,0.14143,0.226528]
oneSample= class=Sample name=NormalCopula implementation=class=SampleImplementation name=NormalCopula size=10 dimension=3 description=[X0,X1,X2] data=[[0.885991,0.03509,0.410967],[0.361292,0.903689,0.875806],[0.786157,0.398475,0.551985],[0.0110089,0.0347878,0.0549614],[0.463832,0.82677,0.548704],[0.28767,0.614586,0.66531],[0.672124,0.18575,0.136607],[0.682113,0.49876,0.620616],[0.962655,0.696223,0.230639],[0.235291,0.339456,0.0367574]]
Point =  class=Point name=Unnamed dimension=3 values=[0.2,0.2,0.2]  pdf=1.376769  cdf=0.017616
Quantile= class=Point name=Unnamed dimension=3 values=[0.773909,0.773909,0.773909]
CDF(quantile)=0.500000
InverseSurvival= class=Point name=Unnamed dimension=3 values=[0.0174781,0.0174781,0.0174781]
Survival(inverseSurvival)=0.950000
entropy=-0.066766
covariance= [[ 0.0833333 0.0199465 0         ]
 [ 0.0199465 0.0833333 0.0199465 ]
 [ 0         0.0199465 0.0833333 ]]
correlation= [[ 1        0.239359 0        ]
 [ 0.239359 1        0.239359 ]
 [ 0        0.239359 1        ]]
spearman= [[ 1        0.239359 0        ]
 [ 0.239359 1        0.239359 ]
 [ 0        0.239359 1        ]]
kendall= [[ 1        0.160861 0        ]
 [ 0.160861 1        0.160861 ]
 [ 0        0.160861 1        ]]
conditional PDF=0.971742
conditional CDF=0.668753
conditional quantile=0.530462
sequential conditional PDF= [1,1.18998,1.15697]
sequential conditional CDF( [0.05,0.15,0.25] )= [0.05,0.259229,0.299588]
sequential conditional quantile( [0.05,0.259229,0.299588] )= [0.05,0.15,0.25]
margin= class=IndependentCopula name=IndependentCopula dimension=1
margin PDF=1.000000
margin CDF=0.250000
margin quantile= class=Point name=Unnamed dimension=1 values=[0.95]
margin realization= class=Point name=Unnamed dimension=1 values=[0.591534]
margin= class=IndependentCopula name=IndependentCopula dimension=1
margin PDF=1.000000
margin CDF=0.250000
margin quantile= class=Point name=Unnamed dimension=1 values=[0.95]
margin realization= class=Point name=Unnamed dimension=1 values=[0.169217]
margin= class=IndependentCopula name=IndependentCopula dimension=1
margin PDF=1.000000
margin CDF=0.250000
margin quantile= class=Point name=Unnamed dimension=1 values=[0.95]
margin realization= class=Point name=Unnamed dimension=1 values=[0.977334]
indices= [1, 0]
margins= class=NormalCopula name=NormalCopula dimension=2 correlation=class=CorrelationMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1,0.25,0.25,1]
margins PDF=1.131175
margins CDF=0.089310
margins quantile= class=Point name=Unnamed dimension=2 values=[0.97395,0.97395]
margins CDF(qantile)=0.950000
margins realization= class=Point name=Unnamed dimension=2 values=[0.469318,0.475491]
Normal copula correlation= class=CorrelationMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.261052,0,0.261052,1,0.261052,0,0.261052,1]  from the Spearman correlation= class=CorrelationMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.25,0,0.25,1,0.25,0,0.25,1]
prob=0.027802
[[]]
    [ y0         y1         ]
0 : [  0.1578     0.0127938 ]
1 : [  0.945074   0.305749  ]
2 : [  1          0.999995  ]
3 : [ -0.454772   0.123333  ]
4 : [ -0.789302   0.89441   ]
5 : [  1          0.203694  ]
6 : [  0.0451322 -0.374899  ]
7 : [ -0.0716327  1         ]
8 : [  1         -0.762682  ]
9 : [  0.752325  -0.262117  ]