File: t_NormalCopula_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (167 lines) | stat: -rwxr-xr-x 5,528 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

# Instantiate one distribution object
dim = 3
R = ot.CorrelationMatrix(dim)
for i in range(dim - 1):
    R[i, i + 1] = 0.25

copula = ot.NormalCopula(R)
print("Copula ", repr(copula))
print("Copula ", copula)
print("Mean ", repr(copula.getMean()))
print("Covariance ", repr(copula.getCovariance()))

# Is this copula an elliptical distribution?
print("Elliptical distribution= ", copula.isElliptical())

# Is this copula elliptical ?
print("Elliptical copula= ", copula.hasEllipticalCopula())

# Is this copula independent ?
print("Independent copula= ", copula.hasIndependentCopula())

# Test for realization of distribution
oneRealization = copula.getRealization()
print("oneRealization=", repr(oneRealization))

# Test for sampling
size = 10
oneSample = copula.getSample(size)
print("oneSample=", repr(oneSample))

# Define a point
point = ot.Point(dim, 0.2)

# Show PDF and CDF of point
pointPDF = copula.computePDF(point)
pointCDF = copula.computeCDF(point)
print("Point = ", repr(point), " pdf=%.6f" % pointPDF, " cdf=%.6f" % pointCDF)

# Get 50% quantile
quantile = copula.computeQuantile(0.5)
print("Quantile=", repr(quantile))
print("CDF(quantile)=%.6f" % copula.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(copula.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
    "Survival(inverseSurvival)=%.6f" % copula.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % copula.computeEntropy())
# Confidence regions
if copula.getDimension() <= 2:
    threshold = ot.Point()
    print(
        "Minimum volume interval=", copula.computeMinimumVolumeInterval(0.95, threshold)
    )
    print("threshold=", threshold)
    beta = ot.Point()
    levelSet = copula.computeMinimumVolumeLevelSet(0.95, beta)
    print("Minimum volume level set=", levelSet)
    print("beta=", beta)
    print(
        "Bilateral confidence interval=",
        copula.computeBilateralConfidenceInterval(0.95, beta),
    )
    print("beta=", beta)
    print(
        "Unilateral confidence interval (lower tail)=",
        copula.computeUnilateralConfidenceInterval(0.95, False, beta),
    )
    print("beta=", beta)
    print(
        "Unilateral confidence interval (upper tail)=",
        copula.computeUnilateralConfidenceInterval(0.95, True, beta),
    )
    print("beta=", beta)

# Covariance and correlation
covariance = copula.getCovariance()
print("covariance=", covariance)
correlation = copula.getCorrelation()
print("correlation=", correlation)
spearman = copula.getSpearmanCorrelation()
print("spearman=", spearman)
kendall = copula.getKendallTau()
print("kendall=", kendall)
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % copula.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % copula.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % copula.computeConditionalQuantile(x, y))
pt = ot.Point([0.1 * i + 0.05 for i in range(dim)])
print("sequential conditional PDF=", copula.computeSequentialConditionalPDF(point))
resCDF = copula.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
    "sequential conditional quantile(",
    resCDF,
    ")=",
    copula.computeSequentialConditionalQuantile(resCDF),
)

# Extract the marginals
for i in range(dim):
    margin = copula.getMarginal(i)
    print("margin=", repr(margin))
    print("margin PDF=%.6f" % margin.computePDF(ot.Point(1, 0.25)))
    print("margin CDF=%.6f" % margin.computeCDF(ot.Point(1, 0.25)))
    print("margin quantile=", repr(margin.computeQuantile(0.95)))
    print("margin realization=", repr(margin.getRealization()))

# Extract a 2-D marginal
indices = [1, 0]
print("indices=", repr(indices))
margins = copula.getMarginal(indices)
print("margins=", repr(margins))
print("margins PDF=%.6f" % margins.computePDF(ot.Point(2, 0.25)))
print("margins CDF=%.6f" % margins.computeCDF(ot.Point(2, 0.25)))
quantile = ot.Point(margins.computeQuantile(0.95))
print("margins quantile=", repr(quantile))
print("margins CDF(qantile)=%.6f" % margins.computeCDF(quantile))
print("margins realization=", repr(margins.getRealization()))

# Creation of the correlation matrix from a Spearman correlation matrix
spearman = ot.CorrelationMatrix(dim)
for i in range(1, dim):
    spearman[i, i - 1] = 0.25

correlation = ot.NormalCopula.GetCorrelationFromSpearmanCorrelation(spearman)
print(
    "Normal copula correlation=",
    repr(correlation),
    " from the Spearman correlation=",
    repr(spearman),
)

ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(copula)
validation.run()

# computeProbability
spearman_corr = ot.CorrelationMatrix([[1.0, 0.74], [0.74, 1.0]])
copula = ot.NormalCopula(
    ot.NormalCopula.GetCorrelationFromSpearmanCorrelation(spearman_corr)
)
interval = ot.Interval([0.958722, 0.902063], [1.0, 1.0])
prob = copula.computeProbability(interval)
print("prob=%.6f" % prob)

print(ot.NormalCopula(1).getParametersCollection())

# normal quantile inf propagation bug in iso transfo
R = ot.CorrelationMatrix(2)
R[0, 1] = 0.2
copula = ot.NormalCopula(R)
standard_list = [ot.Uniform(), ot.Beta()]
distribution = ot.JointDistribution(standard_list, copula)
standard = ot.JointDistribution(standard_list)
transformation = ot.DistributionTransformation(distribution, standard)
standard_sample = transformation(ot.Normal(distribution.getDimension()).getSample(10))
print(standard_sample)