1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Instantiate one distribution object
dim = 3
R = ot.CorrelationMatrix(dim)
for i in range(dim - 1):
R[i, i + 1] = 0.25
copula = ot.NormalCopula(R)
print("Copula ", repr(copula))
print("Copula ", copula)
print("Mean ", repr(copula.getMean()))
print("Covariance ", repr(copula.getCovariance()))
# Is this copula an elliptical distribution?
print("Elliptical distribution= ", copula.isElliptical())
# Is this copula elliptical ?
print("Elliptical copula= ", copula.hasEllipticalCopula())
# Is this copula independent ?
print("Independent copula= ", copula.hasIndependentCopula())
# Test for realization of distribution
oneRealization = copula.getRealization()
print("oneRealization=", repr(oneRealization))
# Test for sampling
size = 10
oneSample = copula.getSample(size)
print("oneSample=", repr(oneSample))
# Define a point
point = ot.Point(dim, 0.2)
# Show PDF and CDF of point
pointPDF = copula.computePDF(point)
pointCDF = copula.computeCDF(point)
print("Point = ", repr(point), " pdf=%.6f" % pointPDF, " cdf=%.6f" % pointCDF)
# Get 50% quantile
quantile = copula.computeQuantile(0.5)
print("Quantile=", repr(quantile))
print("CDF(quantile)=%.6f" % copula.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(copula.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f" % copula.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % copula.computeEntropy())
# Confidence regions
if copula.getDimension() <= 2:
threshold = ot.Point()
print(
"Minimum volume interval=", copula.computeMinimumVolumeInterval(0.95, threshold)
)
print("threshold=", threshold)
beta = ot.Point()
levelSet = copula.computeMinimumVolumeLevelSet(0.95, beta)
print("Minimum volume level set=", levelSet)
print("beta=", beta)
print(
"Bilateral confidence interval=",
copula.computeBilateralConfidenceInterval(0.95, beta),
)
print("beta=", beta)
print(
"Unilateral confidence interval (lower tail)=",
copula.computeUnilateralConfidenceInterval(0.95, False, beta),
)
print("beta=", beta)
print(
"Unilateral confidence interval (upper tail)=",
copula.computeUnilateralConfidenceInterval(0.95, True, beta),
)
print("beta=", beta)
# Covariance and correlation
covariance = copula.getCovariance()
print("covariance=", covariance)
correlation = copula.getCorrelation()
print("correlation=", correlation)
spearman = copula.getSpearmanCorrelation()
print("spearman=", spearman)
kendall = copula.getKendallTau()
print("kendall=", kendall)
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % copula.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % copula.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % copula.computeConditionalQuantile(x, y))
pt = ot.Point([0.1 * i + 0.05 for i in range(dim)])
print("sequential conditional PDF=", copula.computeSequentialConditionalPDF(point))
resCDF = copula.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
copula.computeSequentialConditionalQuantile(resCDF),
)
# Extract the marginals
for i in range(dim):
margin = copula.getMarginal(i)
print("margin=", repr(margin))
print("margin PDF=%.6f" % margin.computePDF(ot.Point(1, 0.25)))
print("margin CDF=%.6f" % margin.computeCDF(ot.Point(1, 0.25)))
print("margin quantile=", repr(margin.computeQuantile(0.95)))
print("margin realization=", repr(margin.getRealization()))
# Extract a 2-D marginal
indices = [1, 0]
print("indices=", repr(indices))
margins = copula.getMarginal(indices)
print("margins=", repr(margins))
print("margins PDF=%.6f" % margins.computePDF(ot.Point(2, 0.25)))
print("margins CDF=%.6f" % margins.computeCDF(ot.Point(2, 0.25)))
quantile = ot.Point(margins.computeQuantile(0.95))
print("margins quantile=", repr(quantile))
print("margins CDF(qantile)=%.6f" % margins.computeCDF(quantile))
print("margins realization=", repr(margins.getRealization()))
# Creation of the correlation matrix from a Spearman correlation matrix
spearman = ot.CorrelationMatrix(dim)
for i in range(1, dim):
spearman[i, i - 1] = 0.25
correlation = ot.NormalCopula.GetCorrelationFromSpearmanCorrelation(spearman)
print(
"Normal copula correlation=",
repr(correlation),
" from the Spearman correlation=",
repr(spearman),
)
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(copula)
validation.run()
# computeProbability
spearman_corr = ot.CorrelationMatrix([[1.0, 0.74], [0.74, 1.0]])
copula = ot.NormalCopula(
ot.NormalCopula.GetCorrelationFromSpearmanCorrelation(spearman_corr)
)
interval = ot.Interval([0.958722, 0.902063], [1.0, 1.0])
prob = copula.computeProbability(interval)
print("prob=%.6f" % prob)
print(ot.NormalCopula(1).getParametersCollection())
# normal quantile inf propagation bug in iso transfo
R = ot.CorrelationMatrix(2)
R[0, 1] = 0.2
copula = ot.NormalCopula(R)
standard_list = [ot.Uniform(), ot.Beta()]
distribution = ot.JointDistribution(standard_list, copula)
standard = ot.JointDistribution(standard_list)
transformation = ot.DistributionTransformation(distribution, standard)
standard_sample = transformation(ot.Normal(distribution.getDimension()).getSample(10))
print(standard_sample)
|