File: t_NormalFactory_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (24 lines) | stat: -rw-r--r-- 2,412 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
distribution= class=Normal name=Normal dimension=3 mean=class=Point name=Unnamed dimension=3 values=[0.5,1.5,2.5] sigma=class=Point name=Unnamed dimension=3 values=[1,3,5] correlationMatrix=class=CorrelationMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.333333,0.5,0.333333,1,0.5,0.5,0.5,1]
Estimated distribution= class=Normal name=Normal dimension=3 mean=class=Point name=Unnamed dimension=3 values=[0.4883,1.46562,2.46859] sigma=class=Point name=Unnamed dimension=3 values=[0.992448,3.00459,4.99434] correlationMatrix=class=CorrelationMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.312825,0.492695,0.312825,1,0.483693,0.492695,0.483693,1]
Default distribution= Normal(mu = 0, sigma = 1)
Distribution from parameters= Normal(mu = [0.5,1.5,2.5], sigma = [1,3,5], R = [[ 1        0.333333 0.5      ]
 [ 0.333333 1        0.5      ]
 [ 0.5      0.5      1        ]])
Normal          = Normal(mu = [0.5,1.5,2.5], sigma = [1,3,5], R = [[ 1        0.333333 0.5      ]
 [ 0.333333 1        0.5      ]
 [ 0.5      0.5      1        ]])
Estimated normal= Normal(mu = [0.4883,1.46562,2.46859], sigma = [0.992448,3.00459,4.99434], R = [[ 1        0.312825 0.492695 ]
 [ 0.312825 1        0.483693 ]
 [ 0.492695 0.483693 1        ]])
Default normal= Normal(mu = 0, sigma = 1)
Normal from parameters= Normal(mu = [0.5,1.5,2.5], sigma = [1,3,5], R = [[ 1        0.333333 0.5      ]
 [ 0.333333 1        0.5      ]
 [ 0.5      0.5      1        ]])
Estimated distribution            = class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0.4883] sigma=class=Point name=Unnamed dimension=1 values=[0.992448] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Parameter distribution            = JointDistribution(Normal(mu = 0.4883, sigma = 0.00992448), RandomMixture(0.00992498 * Chi(nu = 9999)), IndependentCopula(dimension = 2))
distribution= Normal(mu = [0.5,1.5,2.5], sigma = [1,3,5], R = [[ 1        0.333333 0.5      ]
 [ 0.333333 1        0.5      ]
 [ 0.5      0.5      1        ]])
Estimated distribution= Normal(mu = [0.484933,1.42091,2.47586], sigma = [0.986909,2.98736,5.06241], R = [[ 1        0.313268 0.490701 ]
 [ 0.313268 1        0.487274 ]
 [ 0.490701 0.487274 1        ]])